
ПОДШИПНИКОВЫЕ УЗЛЫ ASAHI

ПОДШИПНИКОВЫЕ УЗЛЫ *ASAHI*

УСТРОЙСТВО ПОДШИПНИКОВЫХ УЗЛОВ

Подшипниковые **ASAHI** состоят **УЗЛЫ** из однорядного шарикоподшипника с глубоким желобом и двумя уплотнениями и корпуса, который может быть изготовлен из чугуна, синтетического каучука или прессованной стали и который может иметь различную конфигурацию. Подшипник со сферическим шлифованным наружным диаметром установлен соответствующем сферическом гнезде корпуса, что обеспечивает самоцентровку подшипника в корпусе при монтаже.

ПРЕИМУЩЕСТВА ПОДШИПНИКОВЫХ УЗЛОВ

Все подшипниковые узлы ASAHI с чугунными и

Рациональная самоцентровка Подшипник имеет сферический шлифованный наружный диаметр, соответствующий сферическому внутреннему диаметру корпуса, обеспечивает самоцентровку между этими двумя элементами и компенсацию смещения узлов, возникающего из-за ошибок монтажа и деформации фундамента.

Более высокая нагрузочная способность Аналогично однорядным радиальным шарикоподшипникам с глубоким желобом серий 6200 и 6300, подшипниковые узлы могут выдерживать радиальные нагрузки значительные осевые нагрузки. Кроме того, характеризуются подшипниковые узлы бесшумной работой.

Более продолжительный срок службы Подшипниковые узлы часто используются в жестких условиях эксплуатации, когда возможно проникновение грязи и влаги или воздействие высоких температур. В таких условиях свойства смазки внутри подшипника ухудшаются за промежуток времени. необходимо проводить замену в узлах старой смазки на свежую с соответствующей периодичностью.

резиновыми корпусами предусматривают замену смазки и имеют пресс-масленки для обеспечения максимальной эффективности и более продолжительного срока службы узлов в любых условиях эксплуатации.

Эффективное уплотнение

Подшипник имеет двойное уплотнение, сочетающее себе термоустойчивое маслостойкое уплотнение из синтетического каучука и стальной маслоотражатель. Внешний стальной маслоотражатель, установленный на внутреннем кольце и вращающийся вместе с ним, обеспечивает эффективную защиту от попадания подшипник инородных частиц, защищает подшипник от внешнего давления. Резиновое уплотнение на стальной основе с внутренней стороны, установленное на наружном кольце, соприкасается под небольшим нажимом с поверхностью внутреннего кольца. Сочетание этих двух уплотняющих элементов обеспечивает защиту от попадания грязи и влаги, а также сохранение смазки в камере подшипника, что гарантирует максимальную эффективность работы подшипника даже в жестких условиях эксплуатации. Подшипниковые узлы с крышками предусмотрены для эксплуатации в чрезвычайно жестких окружающих и атмосферных условиях, например, в сталелитейном, мельничном, или литейном производстве. Двойное уплотнение

подшипника и пылезащитные крышки корпуса гарантируют идеальную уплотняющую способность узлов с крышками.

Прочный корпус

Чугунный корпус представляет собой неразъемную монолитную конструкцию, обеспечивающую максимальную стойкость к деформации при монтаже и износоустойчивость при любых условиях эксплуатации.

Крепление стопорными винтами наиболее распространенный метод монтажа на вал. Предусмотрены также и другие варианты крепления помощью закрепительной втулки или эксцентрикового запорного кольца. Для эксплуатации в еще более жестких условиях стандартная комплектация подшипниковых узлов предусматривает чугунные крышки и крышки из прессованной стали.

Простое и надежное крепление на валу

Существуют три варианта крепления подшипниковых узлов на вал. Наиболее распространенным вариантом является крепление с помощью двух стопорных винтов в удлиненном внутреннем кольце. Узлы могут также фиксироваться на валу с помощью закрепительной втулки или эксцентрикового запорного кольца. Bce указанные методы крепления обеспечивают простые монтаж узлов и механическую обработку валов.

Специальная термообработка внутреннего кольца подшипника

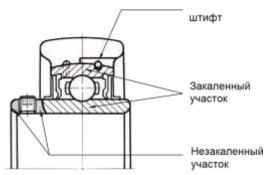
Как показано на рисунке ниже, внутреннее кольцо подшипника имеет закаленные

участки в районе желобка в обойме подшипника и в прилегающих районах, где необходима закалка, в то время как участки в районе стопорных винтов оставлены без закалки. Такая специальная термообработка позволяет обеспечить максимальную эффективность работы исключить подшипника И ослабление стопорных винтов во время работы, поскольку стопорные винты онжом затягивать C достаточно большим моментом затяжки, вызывая разрушительное растрескивание внутреннего кольца.

Уникальное устройство, исключающее вращение наружного кольца подшипника Наружное кольцо подшипника имеет уникальный центрирующий штифт, который обеспечивает свободную самоцентровку узлов, а также исключает вращение наружного кольца. Это обеспечивает более продолжительный срок

службы.

Полная взаимозаменяемость подшипника и корпуса


Высокое качество выполнения подшипника и корпуса позволяет обеспечить их полную взаимозаменяемость. Замену подшипника можно проводить в любой требуемый момент времени.

Простой монтаж

Подшипник предварительно заполнен необходимым количеством высококачественной смазки. Подшипниковые узлы могут эксплуатироваться сразу же после их установки на вал. Кроме того, подшипниковые узлы защищены от проникновения вредных загрязняющих веществ в камеру подшипника во время монтажа.

Простое размещение узла при монтаже

Подушки с установочными отверстиями под

Центрирующий болты на корпусе опорного подшипника, квадратные фланцы и двухболтовые фланцы обеспечивают простое и точное размещение узлов при их монтаже на конструкции.

ТАБЛИЦАРАЗМЕРОВ

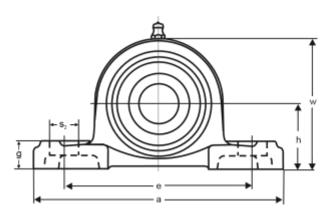
Тип корпуса	Материал корпуса	Серия №	Стр.
Стационарный корпус	Чугун	UCP 200 UCLP 200 UCP X00 UCP 300 UKP 200+H UKP X00+H UKP 300+H UDP 200 CUCP 200C(CE) UCP 200C(E) UCIP 200 UCIP 300 UCPH 200 UCPA 200 UCPA 200 UCEP 200	6 6 7 7 8 8 9 9 10 10 11 11 11 12 12 13
	Резина	UCRP 200	13
	Чугун	BP 200 BLLP	14 14
	Прессованная сталь	BPP BPR KHPR 200	15 15
	Литая сталь	UCPK 200	16
	Ковкий чугун	BPW KHPW 200	16 16
Квадратный фланец	Чугун	UCF 200 UCLF 200 UCF X00 UCF 300 UKF 200+H UKF X00+H UKF 300+H UDF 200 CUCF 200C (CE) UCF 200C (E) BF 200	17 17 18 18 19 19 20 20 21 21 21
Трехболтовой фланец	Прессованная сталь	BPF BPFT	22 22
Фланцевая гильза	Чугун	UCFC 200 UCFC X00 UCFS 300 UDFC 200 CUCFC 200C (CE) UCFC 200C (E)	23 23 24 24 25 25
Двухболтовый фланец	Чугун	UCFL 200 UCFT 200 UCFL X00 UCFL 300 UDFL 200 CUCFL 200C (CE) UCFL 200C (E) BFL 200 BLFL	26 26 27 27 28 29 29 30 30
	Прессованная сталь	BPFL	31
	Ковкий чугун	BFX 200	31

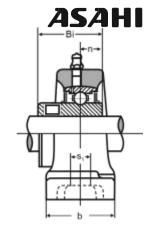
			2	<u>ISAHI</u>
<u>a</u>	Регулируемый фланец	Чугун	UCFA 200	32
Ø				
<u></u>				
<u>;o;</u>				
(<u>o</u>)				
③				
0				
©				

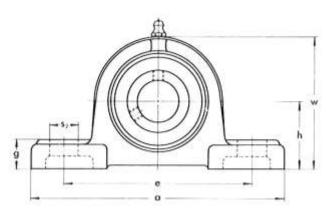
				45 <i>A</i> HI
	Тип корпуса	Материал корпуса	Серия №	Стр.
	Фланец с кронштейном	Чугун	UCFK 200	32
	Узел натяжения	Чугун	UCT 200 UCST 200 UCT X00 UCT 300 UDT 200 CUCT 200C (CE) UCT 200C (E) BT 200	33 33 34 34 35 36 36 37
	Узел натяжения с рамой	Чугун	UCT 200+WB UCTU 200+WU UCTL 200+WL	37 38 38
	Гильза	Чугун	UCC 200 UCLC 200 UCC X00 UCC 300	39 39 40 40
	Подшипник на подвесе		UCECH 200	41
	Двухболтовый фланец	Чугун	BLCTE 200K	41
	Шарикоподшипники	Метод крепления	Серия №	Стр.
		Стопорный винт	UC 200 UCW 200 UC X00 UC 300	43 44 45 46
		Закрепительная втулка	UK 200+H UK X00+H UK 300+H	47 48 49
		Эксцентриковое кольцо	UD 200+EE	50
		Стопорный винт	B SER 200	51 52
		Эксцентриковое кольцо	UG 200+ER KH 200+AE	53 54
Серия Silver	Стационарный корпус	Материал корпуса Специальный сплав	UP 000 MUP 000	56 58
Серия Stainless Silver	Узлы в двухболтовом фланце	Метод крепления Эксцентриковое кольцо	UFL 000 MUFL 000	57 59

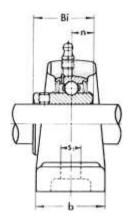
Примечание: Номинальные нагрузки в килограммах (фунтах) при различной частоте вращения и срок службы в часах см. на стр. 80 и 89. Основные номинальные динамические и статические нагрузки в Ньютонах для подшипников конкретных размеров см. на стр. 81.

СТАЦИОНАРНЫЕ КОРПУСА






Тип UCP 200

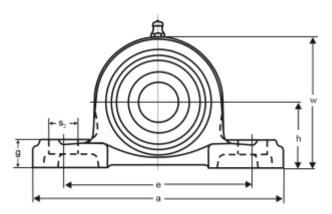

Для нормальных условий эксплуатации Крепление стопорными винтами

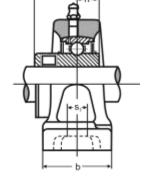
	Диам.				P	азмеры,	М	М				Размер	Подшипник		
Узел №	вала, мм	h	а	е	b	S ₁	S 2	g	W	Bi	n	болта, мм	№	Корпус №	Вес, кг
UCP 201	12	30.2	127	95	38	13	19	15	62	31	12.7	M10	UC 201	P 203	0.65
UCP 202	15	30.2	127	95	38	13	19	15	62	31	12.7	M10	UC 202	P 203	0.63
UCP 203	17	30.2	127	95	38	13	19	15	62	31	12.7	M10	UC 203	P 203	0.62
UCP 204	20	33.3	127	95	38	13	19	15	65	31	12.7	M10	UC 204	P 204	0.65
UCP 205	25	36.5	140	105	38	13	16	16	70	34.1	14.3	M10	UC 205	P 205	0.79
UCP 206	30	42.9	165	121	48	17	21	18	83	38.1	15.9	M14	UC 206	P 206	1.3
UCP 207	35	47.6	167	127	48	17	21	19	94	42.9	17.5	M14	UC 207	P 207	1.6
UCP 208	40	49.2	184	137	54	17	25	19	100	49.2	19	M14	UC 208	P 208	2.0
UCP 209	45	54	190	146	54	17	22	20	108	49.2	19	M14	UC 209	P 209	2.3
UCP 210	50	57.2	206	159	60	20	25	22	114	51.6	19	M16	UC 210	P 210	2.7
UCP 211	55	63.5	219	171	60	20	25	22	126	55.6	22.2	M16	UC 211	P 211	3.3
UCP 212	60	69.8	241	184	70	20	25	25	138	65.1	25.4	M16	UC 212	P 212	4.7
UCP 213	65	76.2	265	203	70	25	29	27	150	65.1	25.4	M20	UC 213	P 213	5.6
UCP 214	70	79.4	266	210	72	25	31	27	156	74.6	30.2	M20	UC 214	P 214	7.3
UCP 215	75	82.6	275	217	74	25	31	28	163	77.8	33.3	M20	UC 215	P 215	7.9
UCP 216	80	88.9	292	232	78	25	31	30	175	82.6	33.3	M20	UC 216	P 216	10.0
UCP 217	85	95.2	310	247	83	25	31	32	187	85.7	34.1	M20	UC 217	P 217	12.0
UCP 218	90	101.6	327	262	88	27	33	34	200	96	39.7	M22	UC 218	P 218	14.7

СТАЦИОНАРНЫЕКОРПУСА

* Тип UCLP 200

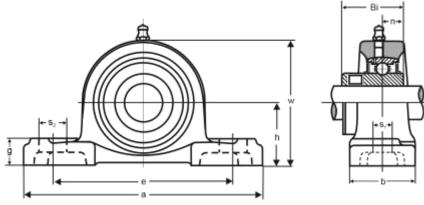
Для нормальных условий эксплуатации Крепление стопорными винтами Малая высота между основанием и центром


	Диам.				P	азмеры,	M	М				Размер	Подшипник		
Узел №	вала, мм	h	а	е	b	S ₁	S 2	g	W	Bi	n	болта, мм	№	Корпус №	Вес, кг
UCLP 201	12	27	121	89	29	12	16	13	56	26	10	M10	UCW 201	LP 203	0.50
UCLP 202	15	27	121	89	29	12	16	13	56	26	10	M10	UCW 202	LP 203	0.49
UCLP 203	17	27	121	89	29	12	16	13	56	26	10	M10	UCW 203	LP 203	0.48
UCLP 204	20	31.8	133	98	32	12	19	13	65	31	12.7	M10	UC 204	LP 204	0.67
UCLP 205	25	33.3	140	105	38	12	19	16	68	34.1	14.3	M10	UC 205	LP 205	0.80
UCLP 206	30	39.7	165	124	41	15	22	17	81	38.1	15.9	M12	UC 206	LP 206	1.2
UCLP 207	35	46	178	137	48	15	22	19	94	42.9	17.5	M12	UC 207	LP 207	1.9
UCLP 208	40	49.2	184	143	51	15	22	21	100	49.2	19	M12	UC 208	LP 208	2.2
UCLP 209	45	52.4	197	152	54	15	25	21	106	49.2	19	M12	UC 209	LP 209	2.4
UCLP 210	50	55.6	213	165	57	15	25	22	113	51.6	19	M12	UC 210	LP 210	2.9
UCLP 211	55	61.9	235	181	64	19	29	25	125	55.6	22.2	M16	UC 211	LP 211	4.0
UCLP 212	60	68.3	248	194	70	19	29	29	138	65.1	25.4	M16	UC 212	LP 212	5.3
UCLP 213	65	68.3	248	194	70	19	29	29	138	65.1	25.4	M16	UC 213	LP 213	5.1


^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

СТАЦИОНАРНЫЕКОРПУСА

Тип UCP X00


Для умеренных условий эксплуатации Крепление стопорными винтами

Voor No	Диам. вала, мм					азмеры,	N	им				Размер болта,	Подшипник	Konsuo No	Dog wa
Узел №	IVIIVI	h	а	е	b	S1	S ₂	g	W	Bi	n	IVIIVI	Nº	корпус №	Вес, кг

														45 A	
UCP X05	25	44.4	159	119	51	17	25	18	85	38.1	15.9	M14	UC X05	P X05	1.5
UCP X06	30	47.6	175	127	57	17	25	20	94	42.9	17.5	M14	UC X06	P X06	1.9
UCP X07	35	54	203	144	57	17	30	22	105	49.2	19	M14	UC X07	P X07	2.7
UCP X08	40	58.7	222	156	67	20	32	26	113	49.2	19	M16	UC X08	P X08	3.5
UCP X09	45	58.7	222	156	67	20	33	26	116	51.6	19	M16	UC X09	P X09	3.5
UCP X10	50	63.5	241	171	73	20	36	27	126	55.6	22.2	M16	UC X10	P X10	4.2
UCP X11	55	69.8	260	184	79	25	36	30	139	65.1	25.4	M20	UC X11	P X11	5.9
UCP X12	60	76.2	286	203	83	25	41	32	151	65.1	25.4	M20	UC X12	P X12	7.2
UCP X13	65	76.2	286	203	83	25	41	32	154	74.6	30.2	M20	UC X13	P X13	7.4
UCP X14	70	88.9	330	229	89	27	51	35	172	77.8	33.3	M22	UC X14	P X14	11.1
UCP X15	75	88.9	330	229	89	27	51	35	177	82.6	33.3	M22	UC X15	P X15	1 1.4
UCP X16	80	1016	381	283	102	27	59	42	197	85.7	34.1.	M22	UC X16	P X16	17.4
UCP X17	85	101.6	381	283	102	27	59	42	202	96	39.7	M22	UC X17	P X17	17.1
UCP XI8	90	101.6	381	283	111	27	60	45	206	104	42.9	M22	UC X18	P X18	17.0
UCP X20	100	127	432	337	121	33	64	52	250	117.5	49.2	M27	UC X20	P X20	33.0

Тип UCP 300

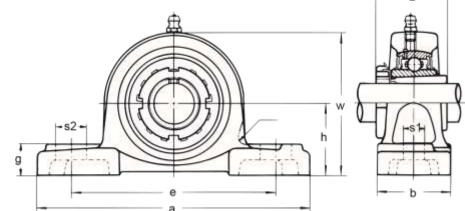

Для тяжелых условий эксплуатации Крепление стопорными винтами

Voor No	Диам. вала, мм				Pa	азмеры,	M	IM				Размер болта, мм	Полимпыик	Корпус №	Вес, кг
Узел №	14114	h	а	е	b	S ₁	S ₂	g	w	Bi	n	141141	Nº	Kopilyc Nº	вес, кі
UCP 305	25	45	175	132	45	17	20	16	83	38	15	M14	UC 305	P 305	1.6

														45 <i>A</i>	HI
UCP 306	30	50	180	140	50	17	20	19	94	43	17	M14	UC 306	P 306	1.9
UCP 307	35	56	210	160	56	17	25	21	105	48	19	M14	UC 307	P 307	2.7
UCP 308	40	60	220	170	60	17	27	23	116	52	19	M14	UC 308	P 308	3.3
UCP 309	45	67	245	190	67	20	30	25	128	57	22	M16	UC 309	P 309	4.5
UCP 310	50	75	275	212	75	20	35	28	143	61	22	M16	UC 310	P 310	6.2
UCP 311	55	80	310	236	80	20	38	31	154	66	25	M16	UC 311	P 311	7.7
UCP 312	60	85	330	250	85	25	38	33	165	71	26	M20	UC 312	P 312	9.3
UCP 313	65	90	340	260	90	25	38	36	174	75	30	M20	UC 313	P 313	9.8
UCP 314	70	95	360	280	90	27	40	40	186	78	33	M22	UC 314	P 314	11.4
UCP 315	75	100	380	290	100	27	40	40	197	82	32	M22	UC 315	P 315	13.6
UCP 316	80	106	400	300	110	27	40	45	209	86	34	M22	UC 316	P 316	16.4
UCP 317	85	112	420	320	110	33	45	45	221	96	40	M27	UC 317	P 317	18.6
UCP 318	90	118	430	330	110	33	45	50	233	96	40	M27	UC 318	P 318	20.9
UCP 319	95	125	470	360	120	36	50	50	250	103	41	M30	UC 319	P 319	26 5
UCP 320	100	140	490	380	120	36	50	55	275	108	42	M30	UC 320	P 320	34.3
UCP 321	105	140	490	380	120	36	50	55	278	112	44	M30	UC 321	P 321	36.6
UCP 322	110	150	520	400	140	40	55	60	295	117	46	M33	UC 322	P 322	42.5
UCP 324	120	160	570	450	140	40	55	70	321	126	51	M33	UC 324	P 324	53.5
UCP 326	130	180	600	480	140	40	55	80	354	135	54	M33	UC 326	P 326	72.1
UCP 328	140	200	620	500	140	40	55	80	388	145	59	M33	UC 328	P 328	89 1

Тип UKP 200 + H

Для нормальных условий эксплуатации Крепление закрепительной втулкой

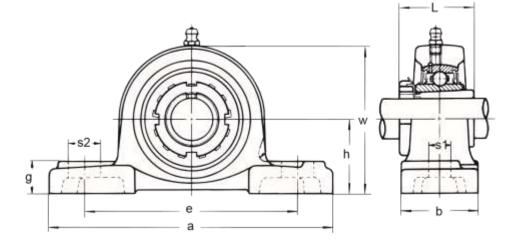


Узел №	Диам. вала, мм				Разме	ры,	ММ				Размер болта, мм	Подшипник №	Корпус №	Вес, кг
	IVIIVI	h	а	е	b	S ₁	S ₂	g	W	L	IVIIVI		'' '	
UKP 205 + H 2305	20	36.5	140	105	38	13	16	16	70	35	M10	UK 205 + H 2305	P 205	0.84
UKP 206 + H 2306	25	42.9	165	121	48	17	21	18	83	38	M14	UK 206 + H 2306	P 206	1.4
UKP 207 + H 2307	30	47.6	167	127	48	17	21	19	94	43	M14	UK 207 + H 2307	P 207	1.6
UKP 208 + H 2308	35	49.2	184	137	54	17	25	19	100	46	M14	UK 208 + H 2308	P 208	2.1
UKP 209 + H 2309	40	54	190	146	54	17	22	20	108	50	M14	UK 209 + H 2309	P 209	2.4

													43 <i>A</i>	
UKP 210 + H 2310	45	57.2	206	159	60	20	25	22	114	55	M16	UK 210 + H 2310	P 210	2.8
UKP 211 + H 2311	50	63.5	219	171	60	20	25	22	126	59	M16	UK 211 + H 2311	P 211	3.4
UKP 212 + H 2312	55	69.8	241	184	70	20	25	25	138	62	M16	UK 212 + H 2312	P 212	4 8
UKP 213 + H 2313	60	76.2	265	203	70	25	29	27	150	65	M20	UK 213 + H 2313	P 213	5.7
UKP 215 + H 2315	65	82.6	275	217	74	25	31	28	163	73	M20	UK 215 + H 2315	P 215	8.3
UKP 216 + H 2316	70	88.9	292	232	78	25	31	30	175	78	M20	UK 216 + H 2316	P 216	10.4
UKP 217 + H 2317	75	95.2	310	247	83	25	31	32	187	82	M20	UK 217 + H 2317	P 217	12.8
LIKP 218 + H 2318	80	101.6	327	262	88	27	33	34	200	86	M22	UK 218 + H 2318	P 218	15 1

Тип UKP X00 + H

Для умеренных условий эксплуатации Крепление закрепительной втулкой

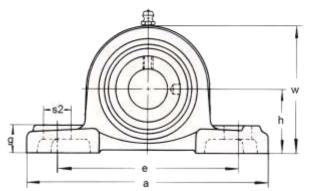

					-			— а				-		
Узел №	Диам. вала, мм				Разме	ры,	ММ				Размер болта, мм	Подшипник №	Корпус №	Вес, кг
	101101	h	а	е	b	S ₁	S ₂	g	W	L	141141		, ,	,
UKP X05 + H 2305	20	44.4	159	119	51	17	25	18	85	35	M14	UK X05 + H 2305	P X05	1.5
UKP X06 + H 2306	25	47.6	175	127	57	17	25	20	94	38	M14	UK X06 + H 2306	P X06	2.0
UKP X07 + H 2307	30	54	203	144	57	17	30	22	105	43	M14	UK X07 + H 2307	P X07	2.7
UKP X08 + H 2308	35	58.7	222	156	67	20	32	26	113	46	M16	UK X08 + H 2308	P X08	3.5
UKP X09 + H 2309	40	58.7	222	156	67	20	33	26	116	50	M16	UK X09 + H 2309	P X09	3.5
UKP X10 + H 2310	45	63.5	241	171	73	20	36	27	126	55	M16	UK X10 + H 2310	P X10	4.3
UKP X11 + H 2311	50	69.8	260	184	79	25	36	30	139	59	M20	UK XI1 + H 2311	P X11	5.8
UKP X12 + H 2312	55	76.2	286	203	83	25	41	32	151	62	M20	UK X12 + H 2312	P X12	7.1
UKP X13 + H 2313	60	76.2	286	203	83	25	41	32	154	65	M20	UK X13 + H 2313	P X13	7.2
UKP X15 + H 2315	65	88.9	330	229	89	27	51	35	177	73	M22	UK X15 + H 2315	P X15	11.5
UKP X16 + H 2316	70	101.6	381	283	102	27	59	42	197	78	M22	UK X16 + H 2316	P X16	17.4
UKP X17 + H 2317	75	101.6	381	283	102	27	59	42	202	82	M22	UK X17 + H 2317	P X17	17.0
UKP X18 + H 2318	80	101.6	381	283	111	27	60	45	206	86	M22	UK X18 + H 2318	P X18	16.7
UKP X20 + H 2320	90	127	432	337	121	33	64	52	250	97	M27	UK X20 + H 2320	P X20	32.1

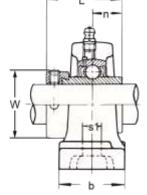
ASAHI

Тип Для

UKP 300 + H

тяжелых условий эксплуатации Крепление закрепительной втулкой



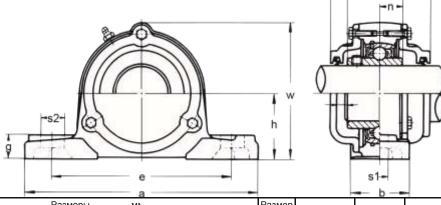

Узел №	Диам. вала, мм				Разме	ры,	ММ				Размер болта, мм	Подшипник №	Корпус №	Вес, кг
	IVIIVI	h	а	е	b	S ₁	S ₂	g	W	L	IVIIVI		1, 7,	,
UKP 305 + H 2305	20	45	175	132	45	17	20	16	83	35	M14	UK 305 + H 2305	P 305	1.6
UKP 306 + H 2306	25	50	180	140	50	17	20	19	94	38	M14	UK 306 + H 2306	P 306	1.9
UKP 307 + H 2307	30	56	210	160	56	17	25	21	105	43	M14	UK 307 + H 2307	P 307	2.7
UKP 3.08 + H 2308	35	60	220	170	60	17	27	23	116	46	M14	UK 308+ H 2308	P 308	3.0
UKP 309 + H 2309	40	67	245	190	67	20	30	25	128	50	M16	UK 309 + H 2309	P 309	4.6
UKP 310 + H 2310	45	75	275	212	75	20	35	28	143	55	M16	UK 310 + H 2310	P 310	6.2
UKP 311 + H 2311	50	80	310	236	80	20	38	31	154	59	M16	UK 311 + H 2311	P 311	7.9
UKP 312 + H 2312	55	85	330	250	85	25	38	33	165	62	M20	UK 312 + H 2312	P 312	9.3
UKP 313 + H 2313	60	90	340	260	90	25	38	36	174	65	M20	UK 313 + H 2313	P 313	9.8
UKP 315 + H 2315	65	100	380	290	100	27	40	40	197	73	M22	UK 315 + H 2315	P 315	13.7
UKP 316 + H 2316	70	106	400	300	1 10	27	40	45	209	78	M22	UK 316 + H 2316	P 316	16.6
UKP 317 + H 2317	75	112	420	320	110	33	45	45	221	82	M27	UK 317 + H 2317	P 317	18.6
UKP 318 + H 2318	80	118	430	330	110	33	45	50	233	86	M27	UK 318 + H 2318	P 318	21.1
UKP 319 + H 2319	85	125	470	360	120	36	50	50	250	90	M30	UK 319 + H 2319	P 319	26.5
UKP 320 + H 2320	90	140	490	380	120	36	50	55	275	97	M30	UK 320 + H 2320	P 320	34.3
UKP 322 + H 2322	100	150	520	400	140	40	55	60	295	105	M33	UK 322 + H 2322	P 322	42.6
UKP 324 + H 2324	110	160	570	450	140	40	55	70	321	112	M33	UK 324 + H 2324	P 324	53.0
UKP 326 + H 2326	115	180	600	480	140	40	55	80	354	121	M33	UK 326 + H 2326	P 326	72.4
UKP 328 + H 2328	125	200	620	500	140	40	55	80	388	131	M33	UK 328 + H 2328	P 328	89.4

СТАЦИОНАРНЫЕ КОРПУСА

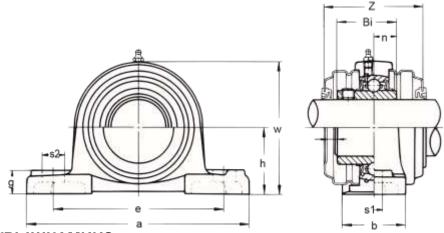
* Тип UDP 200

Для нормальных условий эксплуатации Крепление эксцентриковым кольцом

Узел №	Диам. вала, мм					Размер)Ы,	ММ					Размер болта, мм	Подшипник №	Корпус №	Вес, кг
		h	а	е	b	S ₁	S ₂	g	W	L	n	W				
UDP 204	20	33.3	127	95	38	13	19	15	65	31	11.5	29	M10	UD 204 + EE	P 204	0.65
UDP 205	25	36.5	140	105	38	13	16	16	70	32	11.5	34	M10	UD 205 + EE	P 205	0.78
UDP 206	30	42.9	165	121	48	17	21	18	83	36	13	40	M14	UD 206 + EE	P 206	1.3
UDP 207	35	47.6	167	127	48	17	21	19	94	38	13.5	48	M14	UD 207 + EE	P 207	1.5
UDP 208	40	49.2	184	137	54	17	25	19	100	40	14.5	53	M14	UD 208 + EE	P 208	1.9


	UDP 209	45	54	190	146	54	17	22	20	108	42	15	57	M14	UD 209 + EE	P 209	2.2
-	UDP 210	50	57.2	206	159	60	20	25	22	114	43	15.5	63	M16	UD 210 + EE	P 210	2.6

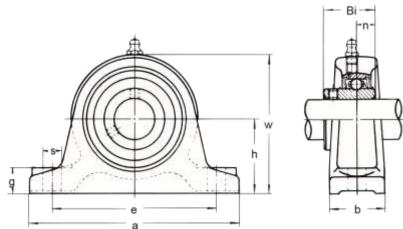
^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.


СТАЦИОНАРНЫЕКОРПУСАСЧУГУННЫМИ КРЫШКАМИ

Тип CUCP 200C (CE)

Для нормальных условий эксплуатации Крепление стопорными винтами

									- 6	1				1			7
Узе.	л№	Диам. вала, мм				F	Размер	Ы,	MN					Размер болта, мм	Подшипник	Корпус №	Вес, кг
Открытая крышка	Закрытая крышка	IVIIVI	h	а	е	b	s1	s2	g	W	Z	Bi	n	IVIIVI	Nº		200,
CUCP 201C	CUCP 201CE	12	30.2	127	95	38	13	19	15	66	62	31	12.7	M10	UC 201	CP 203	1.1
CUCP 202C	CUCP 202CE	15	30.2	127	95	38	13	19	15	66	62	31	12.7	M10	UC 202	CP 203	1.1
CUCP 203C	CUCP 203CE	17	30.2	127	95	38	13	19	15	66	62	31	12.7	M10	UC 203	CP 203	1.1
CUCP 204C	CUCP 204CE	20	33.3	127	95	38	13	19	15	69	62	31	12.7	M10	UC 204	CP 204	1.1
CUCP 205C	CUCP 205CE	25	36.5	140	105	38	13	16	16	76	70	34.1	14.3	M10	UC 205	CP 205	1.4
CUCP 206C	CUCP 206CE	30	42.9	165	121	48	17	21	18	87	74	38.1	15.9	M14	UC 206	CP 206	2.0
CUCP 207C	CUCP 207CE	35	47.6	167	127	48	17	21	19	97	80	42.9	17.5	M14	UC 207	CP 207	2.5
CUCP 208C	CUCP 208CE	40	49.2	184	137	54	17	25	19	104	90	49.2	19	M14	UC 208	CP 208	3.0
CUCP 209C	CUCP 209CE	45	54	190	146	54	17	22	20	114	90	49.2	19	M14	UC 209	CP 209	3.4
CUCP 210C	CUCP 210CE	50	57.2	206	159	60	20	25	22	120	98	51.6	19	M16	UC 210	CP 210	4.1
CUCP 211C	CUCP 211CE	55	63.5	219	171	60	20	25	22	133	100	55.6	22.2	M16	UC 211	CP 211	5.0
CUCP 212C	CUCP 212CE	60	69.8	241	184	70	20	25	25	145	114	65.1	25.4	M16	UC 212	CP 212	6.7
CUCP 213C	CUCP 213CE	65	76.2	265	203	70	25	29	27	156	118	65.1	25.4	M20	UC 213	CP 213	7.8
CUCP 214C	CUCP 214CE	70	79.4	26 6	210	72	25	31	27	162	134	74.6	30.2	M20	UC 214	CP 214	9.3
CUCP 215C	CUCP 215CE	75	82.6	275	217	74	25	31	28	167	136	77.8	33.3	M20	UC 215	CP 215	9.6
CUCP 216C	CUCP 216CE	80	88.9	292	232	78	25	31	30	188	146	82.6	33.3	M20	UC 216	CP 216	12.2
CUCP 217C	CUCP 217CE	85	95.2	310	247	83	25	31	32	199	150	85.7	34.1	M20	UC 217	CP 217	14.2
CUCP 218C	CUCP 218CE	90	101.6	327	262	88	27	33	34	21 1	164	96	39.7	M22	UC 218	CP 218	18.2


СТАЦИОНАРНЫЕКОРПУСАСКРЫШКАМИИЗ ПРЕССОВАННОЙСТАЛИ

Тип UCP 200C (E)

Для нормальных условий эксплуатации Крепление стопорными винтами

Тип Для

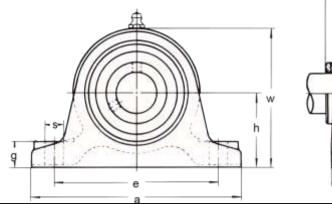
Узе	л №	Диам. вала,				F	Размер	ы,	MN	1				Размер болта,	Подшипник	IG No	D
Открытая крышка	Закрытая крышка	ММ	h	а	е	b	s1	s2	g	W	Z	Bi	n	ММ	Nº	Корпус №	Вес, кг
UCP 201C	UCP 201E	12	30.2	127	95	38	13	19	15	62	56	31	12.7	M10	UC 201	P 203C	0. 71
UCP 202C	UCP 202E	15	30.2	127	95	38	13	19	15	62	56	31	12.7	M10	UC 202	P 203C	0. 69
UCP 203C	UCP 203E	17	30.2	127	95	38	13	19	15	62	56	31	12.7	M10	UC 203	P 203C	0. 68
UCP 204C	UCP 204E	20	33.3	127	95	38	13	19	15	65	56	31	12.7	M10	UC 204	P 204C	0. 71
UCP 205C	UCP 205E	25	36.5	140	105	38	13	16	16	70	63	34.1	14.3	M10	UC 205	P 205C	0.86
UCP 206C	UCP 206E	30	42.9	165	121	48	17	21	18	83	65	38.1	15.9	M14	UC 206	P 206C	1.4
UCP 207C	UCP 207E	35	47.6	167	127	48	17	21	19	94	70	42.9	17.5	M14	UC 207	P 207C	1.7
UCP 208C	UCP 208E	40	49.2	184	137	54	17	25	19	100	82	49.2	19	M14	UC 208	P 208C	2. 2
UCP 209C	UCP 209E	45	54	190	146	54	17	22	20	108	82	49.2	19	M14	UC 209	P 209C	2. 5
UCP 210C	UCP 210E	50	57.2	206	159	60	20	25.	22	114	87	51.6	19	M16	UC 210	P 210C	3. 0
UCP 211C	UCP 211E	55	63.5	219	171	60	20	25	22	126	88	55.6	22.2	M16	UC 211	P 211C	3.7
UCP 212C	UCP 212E	60	69.8	241	184	70	20	25	25	138	102	65.1	25.4	M16	UC 212	P 212C	5. 1
UCP 213C	UCP 213E	65	76.2	265	203	70	25	29	27	150	102	65.1	25.4	M20	UC 213	P 213C	6. 1

UCIP 200

нормальных условий

эксплуатации Крепление стопорными винтами

Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	h	а	е	b	S	g	W	Bi	n	100100	Nº	., ,	
UCIP 208	40	60	200	150	60	19	25	115	49.2	19	M16	UC 208	IP 208	3.6
UCIP 209	45	70	210	160	60	19	25	128	49.2	19	M16	UC 209	IP 209	3.8
UCIP 210	50	70	220	170	60	19	28	132	51.6	19	M16	UC 210	IP 210	4.4
UCIP 211	55	80	230	180	60	19	28	148	55.6	22.2	M16	UC 211	IP 211	5.5

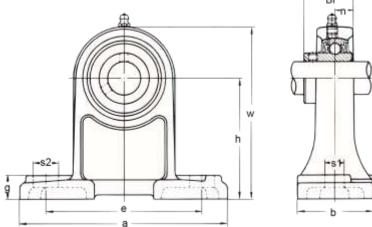

Bi

IP 212 IP 213 UCIP 212 200 65.1 25.4 M20 UC 212 260 70 22 30 155 UCIP 213 280 220 70 30 172 65.1 25.4 M20 UC 213 7.5

СТАЦИОНАРНЫЕ КОРПУСА

Тип UCIP 300

Для тяжелых условий эксплуатации Крепление стопорными винтами

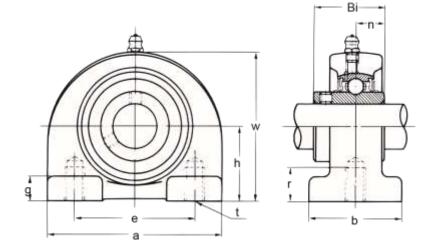

Узел №	Диам. вала, мм				Разме	ры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	h	а	е	b	S	g	W	Bi	n	· IVIIVI	Nº	,	
UCIP 313	65	110	310	250	70	22	30	208	75	30	M20	UC 313	IP 313	12.4
UCIP 314	70	110	330	270	75	25	35	215	78	33	M22	UC 314	IP 314	14 9
UCIP 315	75	120	340	280	75	25	35	230	82	32	M22	UC 315	IP 315	16 2
UCIP 316	80	120	350	290	85	25	40	235	86	34	M22	UC 316	IP 316	20.8
UCIP 317	85	130	370	310	85	25	40	255	96	40	M22	UC 317	IP 317	23.1
UCIP 318	90	130	400	330	85	29	45	260	96	40	M24	UC 318	IP 318	25.7
UCIP 319	95	150	410	340	85	29	45	285	103	41	M24	UC 319	IP 319	29.7
UCIP 320	100	150	430	360	85	29	45	295	108	42	M24	UC 320	IP 320	33.4
UCIP 322	110	170	490	410	100	32	50	335	117	46	M27	UC 322	IP 322	50.4
UCIP 324	120	170	510	430	100	32	50	345	126	51	M27	UC 324	IP 324	56.8
UCIP 326	130	200	550	470	110	32	50	390	135	54	M27	UC 326	IP 326	73.2
UCIP 328	140	200	590	500	110	35	55	400	145	59	M30	UC 328	IP 328	83.5

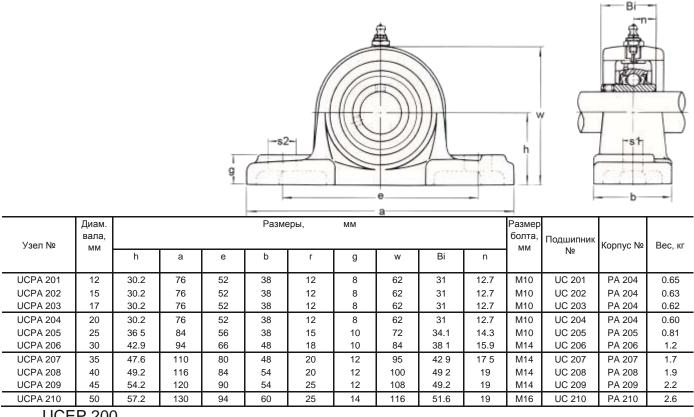
Тип _{Для}

UCPH 200

нормальных условий эксплуатации Крепление стопорными винтами

							-			— a —			1		
Узел №	Диам. вала, мм					'азмеры, ім						Размер болта, мм	Подшипник	Корпус №	Вес, кг
) 3611 M2	l www	h	а	е	b	S ₁	S ₂	g	W	Bi	n	141141	Nº	корпус нұ	Бес, кі
UCPH 201	12	70	127	95	40	13	19	15	101	31	12.7	M10	UC 201	PH 204	1.0
UCPH 202	15	70	127	95	40	13	19	15	101	31	12.7	M10	UC 202	PH 204	0.99
UCPH 203	17	70	127	95	40	13	19	15	101	31	12.7	M10	UC 203	PH 204	0.98
UCPH 204	20	70	127	95	40	13	19	15	101	31	12.7	M10	UC 204	PH 204	0.96
UCPH 205	25	80	140	105	50	13	19	16	114	34.1	14.3	M10	UC 205	PH 205	1.2
UCPH 206	30	90	165	121	50	17	21	18	130	38.1	15.9	M14	UC 206	PH 206	1.9
UCPH 207	35	95	167	127	60	17	21	19	140	42.9	17.5	M14	UC 207	PH 207	2.4
UCPH 208	40	100	184	137	70	17	25	19	149	49.2	19	M14	UC 208	PH 208	2.8
UCPH 209	45	105	190	146	70	17	25	20	157	49.2	19	M14	UC 209	PH 209	3.2
UCPH 210	50	110	206	159	70	20	25	22	165	51.6	19	M16	UC 210	PH 210	3.6




Тип Для

СТАЦИОНАРНЫЕ КОРПУСА

Тип UCPA 200

Для нормальных условий эксплуатации Крепление стопорными винтами

UCEP 200

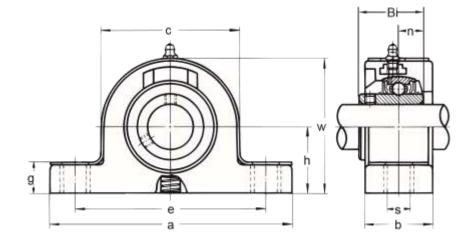
нормальных условий

Тип

Для

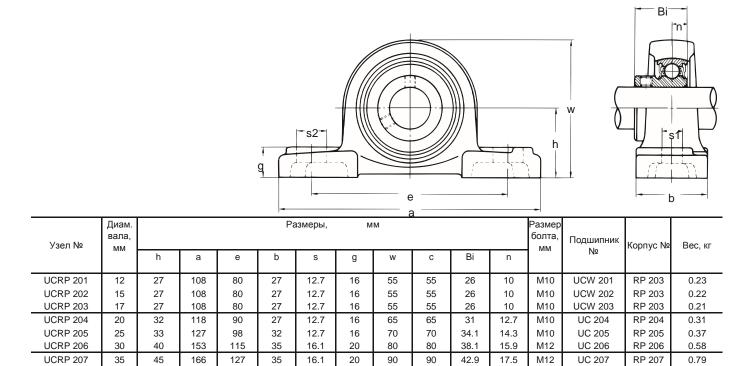
эксплуатации Крепление стопорными винтами Удлиненного типа

Voor No	Диам. вала, мм				Pa	азмеры,	M	1M				Размер болта, мм	Подшипник	Konsus No	Dog ur
Узел №	IVIIVI	h	а	е	b	S ₁	S ₂	g	w	Bi	n	IVIIVI	Nº	Корпус №	Вес, кг
UCEP 204	20	36.5	140	105	38	13	16	16	73	31	12.7	M10	UC 204	EP 204	1.1
UCEP 205	25	44.4	159	119	51	17	20	18	85	34.1	14.3	M14	UC 205	EP 205	1.5
UCEP 206	30	47.6	175	127	57	17	20	20	94	38.1	15.9	M14	UC 206	EP 206	2.0
UCEP 207	35	54	203	144	57	17	20	22	108	42.9	17.5	M14	UC 207	EP 207	2.7
UCEP 208	40	58.7	222	156	67	20	24	26	116	49.2	19	M16	UC 208	EP 209	3.5
UCEP 209	45	58.7	222	156	67	20	24	26	116	49.2	19	M16	UC 209	EP 209	3.4
UCEP 210	50	63.5	241	171	73	20	26	27	126	51.6	19	M16	UC 210	EP 210	4.1
UCEP 211	55	69.8	260	184	79	25	28	30	139	55.6	22.2	M20	UC 211	EP 211	5.6
UCEP 212	60	76.2	286	203	83	25	30	32	151	65.1	25.4	M20	UC 212	EP 212	7.1
UCEP 213	65	76.2	286	203	83	25	30	32	154	65.1	25.4	M20	UC 213	EP 213	7.0
UCEP 214	70	88.9	330	229	89	27	31	35	177	74.6	30.2	M22	UC 214	EP 215	10.8
UCEP 215	75	88.9	330	229	89	27	31	35	177	77.8	33.3	M22	UC 215	EP 215	10.9
UCEP 216	80	101.6	381	283	102	27	40	42	205	82.6	33.3	M22	UC 216	EP 217	17.1
UCEP 217	85	101.6	381	283	102	27	40	42	205	85.7	34.1	M22	UC 217	EP 217	16.4



Тип Для

СТАЦИОНАРНЫЕКОРПУСА ВРЕЗИНОВОМКОРПУСЕ


* Тип UCRP 200

Для нормальных условий эксплуатации Крепление стопорными винтами

M12

0.79

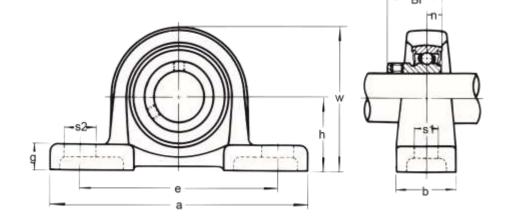
Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

BP 200

легких условий

Тип

Для

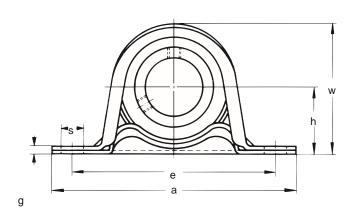

эксплуатации Крепление стопорными винтами

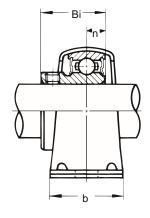
Узел №	Диам. вала, мм				Pa	азмеры,	М	И				Размер болта, мм	Подшипник	Корпус №	Вес, кг
		h	а	е	b	S ₁	\$2	g	W	Bi	n	141141	Nº		,
BP 204	20	33.3	127	95	38	13	19	15	65	24.7	7	M10	B 4	P 204	0.61
BP 205	25	36.5	140	105	38	13	16	16	70	27	7.5	M10	B 5	P 205	0.76
BP 206	30	42.9	165	121	48	17	21	18	83	30.3	8	M14	B 6	P 206	1.2
BP 207	35	47.6	167	127	48	17	21	19	94	32.9	8.5	M14	В7	P 207	1.6

СТАЦИОНАРНЫЕ КОРПУСА

Тип BLLP

Для легких условий эксплуатации Крепление стопорными винтами

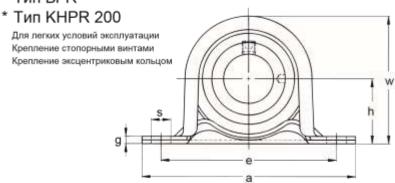


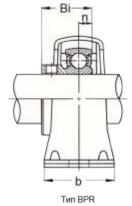

Узел №	Диам. вала, мм				Pa	азмеры,	N	1M				Размер болта, мм	Подшипник	Kongyo No	Poo w
y 3eJI Nº		h	а	е	b	S ₁	S ₂	g	W	Bi	n		Nº	Корпус №	Вес, кг
BLLP 1J	12	30.2	114	87	25	12	16	12	57	22	6	M10	B 1	LLP 31	0.39
BLLP 2J	15	30.2	114	87	25	12	16	12	57	22	6	M10	B 2	LLP 31	0.38
BLLP 3J	17	30.2	114	87	25	12	16	12	57	22	6	M10	В3	LLP 31	0.36
BLLP 4J	20	33.3	125	97	27	12	16	13	64	24.7	7	M10	B 4	LLP 4J	0.48
BLLP 5J	25	36.5	130	100	29	12	16	13	70	27	7.5	M10	B 5	LLP 5J	0.59
BLLP 6J	30	42.9	156	120	33	14	21	15	83	30.3	8	M12	В 6	LLP 6J	0.70
BLLP 7J	35	47.6	165	127	35	14	21	16	93	32.9	8.5	M12	В7	LLP 71	0.98

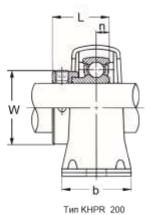
СТАЦИОНАРНЫЕКОРПУСАВКОРПУСЕИЗ ПРЕССОВАННОЙСТАЛИ

Тип ВРР

Для легких условий эксплуатации Крепление стопорными винтами



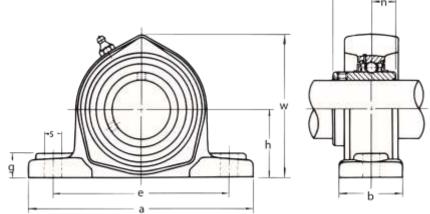



Vara Na	Диам.				Разме	еры,	ММ				Разме р болта.	Подшипник	Kanana Na	D
Узел №	вала, мм	h	а	е	b	S	g	w	Bi	n	ММ	Nº	Корпус №	Вес, кг
BPP 1	12	22.2	86	68	25	9. 5	3.2	44	22	6	M8	B 1	PP 3	0.16
BPP 2	15	22.2	86	68	25	9. 5	3.2	44	22	6	M8	B 2	PP 3	0.15
BPP 3	17	22.2	86	68	25	9. 5	3.2	44	22	6	M8	В3	PP 3	0.13
BPP 4	20	25.4	98	76	32	9. 5	3.2	50	24.7	7	M8	B 4	PP 4	0.21
BPP 5	25	28.6	108	86	32	11.5	4	56	27	7.5	M10	B 5	PP 5	0.29
BPP 6	30	33.3	117	95	38	11.5	4	66	30.3	8	M10	B 6	PP 6	0.42
BPP 7	35	39.7	129	106	42	11.5	4.6	78	32.9	8.5	M10	В7	PP 7	0.61

СТАЦИОНАРНЫЕКОРПУСАНАРЕЗИНОВОЙПОДУШКЕ

Крепление стопорными винтами Крепление эксцентриковым кольцом

Узе	ел №						Разм	еры,		MM	ı							новое	Ве	С, КГ
		Диам.													Размер	Корпус		цо №		
В комплекте с типом В	В комплекте с типом КН 200 + AE	вала, мм	h	а	Ф	b	s	g	W	Bi	L		n KHPR	W	болта, мм	Nº	BPR	KHPR	BPR	KHPR
BPR 1	KHPR 201	12	25.4	98	76	32	9.5	3.2	50	22	28.6	6	6.5	28.6	M 8	PP 4	R 4	R 4F	0.19	0.21
BPR 2	KHPR 202	15	25.4	98	76	32	9.5	3.2	50	22	28.6	6	6.5	28.6	M 8	PP 4	R 4	R 4F	0.13	0.20
BPR 3	KHPR 203	17	25.4	98	76	32	9.5	3.2	50	22	28.6	6	6.5	28.6	M 8	PP 4	R 4	R 4F	0.16	0.19
BPR 4	KHPR 204	20	28.6	108	86	32	1 1.5	4	56	24.7	31	7	7.5	33.3	M10	PP 5	R 5	R 5F	0.25	0.24
BPR 5	KHPR 205	25	33.3	117	95	38	1 1.5	4	66	27	31	7.5	7.5	38.1	M10	PP 6	R 6	R 6	0.33	0.35
BPR 6	KHPR 206	30	39.7	129	106	42	1 1.5	4.6	78	30.3	35.7	8	9	44.5	M10	PP 7	R 7	R 7F	0.48	0.53

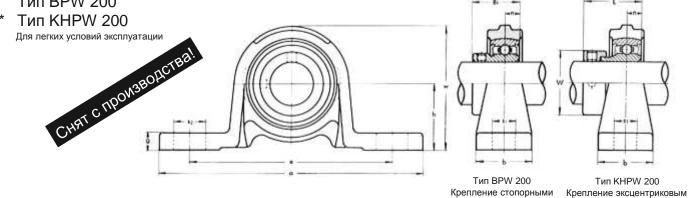

^{*}Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

СТАЦИОНАРНЫЕКОРПУСАВКОРПУСЕ

ИЗЛИТОЙСТАЛИ * ТИП UCPK

200

Для нормальных условий эксплуатации Крепление стопорными винтами

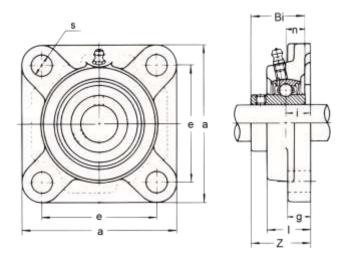

винтами

кольцом

Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	141141	h	а	е	b	S	g	w	Bi	n	141141	Nº		,
UCPK 212	60	69.8	233	184	65	19	25	145	65.1	25.4	M16	UC 212	PK 212	5.7
UCPK 213	65	76.2	258	203	70	24	27	156	65.1	25.4	M20	UC 213	PK 213	6.7
UCPK 214	70	79.4	266	210	72	24	27	162	74.6	30.2	M20	UC 214	PK 214	7.6
UCPK 215	75	82.6	272	217	74	24	28	167	77.8	33.3	M20	UC 215	PK 215	8.1
UCPK 216	80	88.9	288	232	75	24	30	188	82.6	33.3	M20	UC 216	PK 216	10.4
UCPK 217	85	95.2	303	247	80	24	32	199	85.7	34.1	M20	UC 217	PK 217	12.2
UCPK 218	90	101.6	322	262	85	26	34	211	96	39.7	M22	UC 218	PK 218	15.2

СТАЦИОНАРНЫЕКОРПУСАВКОРПУСЕИЗКОВКОГОЧУГУНА

Тип BPW 200

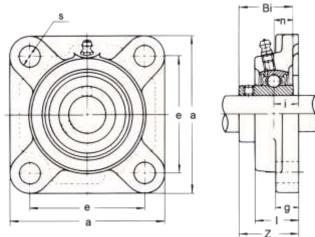

Узе	л №						F	азмер	Ы,	М	М							Ве	ес, кг
		Диам.														Размер	Корпус		
В комплекте с типом В	В комплекте с типом КН 200+АЕ	вала, мм	h	а	е	b	s1	s2	g	w	Bi	L		n KHPW	W	болта, мм	Nº.	BPW	KHPW
BPW 201	KHPW 201	12	30.2	114	87	25	11	16	7	55	22	28.6	6	6.5	28.6	M10	PW203K	0.27	0.31
BPW 202	KHPW 202	15	30.2	114	87	25	11	16	7	55	22	28.6	6	6.5	28.6	M10	PW203K	0.26	0.30
BPW 203	KHPW 203	17	30.2	114	87	25	11	16	7	55	22	28.6	6	6.5	28.6	M10	PW203K	0.24	0 29
BPW 204	KHPW 204	20	33.3	125	97	27	11	16	8	62	24.7	31	7	7.5	33.3	M10	PW204K	0.37	0.37
BPW 205	KHPW 205	25	36.5	130	100	29	11	16	9	69	27	31	7.5	7.5	38.1	M10	PW205K	0.46	0.48
BPW 206	KHPW 206	30	42.9	156	120	33	14	21	10	81	30.3	35.7	8	9	44.5	M12	PW206K	0.75	0.81
BPW 207	KHPW 207	35	47.6	165	127	35	14	21	10	91	32.9	38.9	8.5	9.5	55.6	M12	PW207K	0 98	1.1
_	KHPW 208	40	50.8	181	140	37	14	22	11	99	—	43.7	l —	11	60.3	M12	PW208K	l —	1.4
	KHPW 209	45	54	190	146	38	14	24	12	106	_	43.7	_	11	63.5	M12	PW209K	_	1.5
_	KHPW 210	50	57.2	202	157	40	14	24	13	112	-	43.7	_	11	69.9	M12	PW210K	-	1.7

^{*}Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

УЗЛЫВКВАДРАТНОМФЛАНЦЕ

Тип UCF 200

Для нормальных условий эксплуатации Крепление стопорными винтами

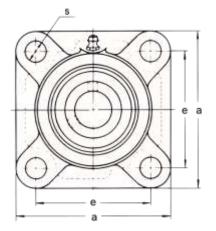


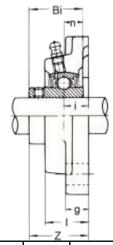
Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	е	i	g	I	S	Z	Bi	n	IVIIVI	Nº	,	
UCF 201	12	86	64	15	12	25.5	12	33.3	31	12.7	M10	UC 201	F 204	0.64
UCF 202	15	86	64	15	12	25.5	12	33.3	31	12.7	M10	UC 202	F 204	0.62
UCF 203	17	86	64	15	12	25.5	12	33.3	31	12.7	M10	UC 203	F 204	0.61
UCF 204	20	86	64	15	12	25.5	12	33.3	31	12.7	M10	UC 204	F 204	0.59
UCF 205	25	95	70	16	14	27	12	35.7	34.1	14.3	M10	UC 205	F 205	0.82
UCF 206	30	108	83	18	14	31	12	40.2	38.1	15.9	M10	UC 206	F 206	1.1
UCF 207	35	117	92	19	16	34	14	44.4	42.9	17.5	M12	UC 207	F 207	1.5
UCF 208	40	130	102	21	16	36	16	51.2	49.2	19	M14	UC 208	F 208	2.0
UCF 209	45	137	105	22	18	38	16	52.2	49.2	19	M14	UC 209	F 209	2.4
UCF 210	50	143	111	22	18	40	16	54.6	51.6	19	M14	UC 210	F 210	2.5
UCF 211	55	162	130	25	20	43	19	58.4	55.6	22.2	M16	UC 211	F 211	3.4
UCF 212	60	175	143	29	20	48	19	68.7	65.1	25.4	M16	UC 212	F 212	4.6
UCF 213	65	187	149	30	20	50	19	69.7	65.1	25.4	M16	UC 213	F 213	5.5
UCF 214	70	193	152	31	24	54	19	75.4	74.6	30.2	M16	UC 214	F 214	6.1
UCF 215	75	200	159	34	24	56	19	78.5	77.8	33.3	M16	UC 215	F 215	6.9
UCF 216	80	208	165	34	24	58	23	83.3	82.6	33.3	M20	UC 216	F 216	7.8
UCF 217	85	220	175	36	26	63	23	87.6	85.7	34.1	M20	UC 217	F 217	9.3
UCF 218	90	235	187	40	26	68	23	96.3	96	39.7	M20	UC 218	F 218	11.3

УЗЛЫВКВАДРАТНОМФЛАНЦЕ

* Тип UCLF 200

Для нормальных условий эксплуатации Крепление стопорными винтами

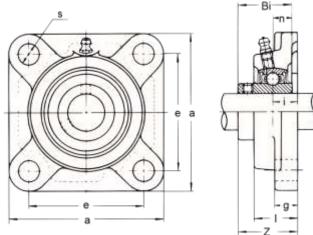

Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипни	Корпус №	Вес, кг
		а	е	i	g	I	S	Z	Bi	n		к№		
UCF 201	12	76	54	16.7	10	28	10.5	32.7	26	10	M10	UCW 201	LF 203	0.52
UCF 202	15	76	54	16.7	10	28	10.5	32.7	26	10	M10	UCW 202	LF 203	0.51
UCF 203	17	76	54	16.7	10	28	10.5	32.7	26	10	M10	UCW 203	LF 203	0.50
UCF 204	20	86	63.5	20.6	10	33	10.5	38.9	31	12.7	M10	UC 204	LF 204	0.68
UCF 205	25	95	69.8	21	11	35	12.5	40.7	34.1	14.3	M10	UC 205	LF 205	0.85
UCF 206	30	108	82.6	22.6	13	37	12.5	44.8	38.1	15.9	M10	UC 206	LF 206	1.2
UCF 207	35	117	92.1	22.2	14	38	14	47.6	42.9	17.5	M12	UC 207	LF 207	1.6
UCF 208	40	130	101.6	24.6	16	41	14	54.8	49.2	19	M14	UC 208	LF 208	2.1
UCF 209	45	137	104.8	24.6	16	42	16	54.8	49.2	19	M14	UC 209	LF 209	2.4
UCF 210	50	143	111.1	27.8	16	46	16	60.4	51.6	19	M14	UC 210	LF 210	2.6
UCF 211	55	162	130.2	31	17	50	18	64.4	55.6	22.2	M16	UC 211	LF 211	3.6
UCF 212	60	175	142.9	34.1	17	55	18	73.8	65.1	25.4	M16	UC 212	LF 212	4.7
UCF 213	65	175	142.9	34.1	17	55	18	73.8	65.1	25.4	M16	UC 213	LF 213	4.8


^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

УЗЛЫВКВАДРАТНОМ ФЛАНЦЕ

Тип UCF X00

Для умеренных условий эксплуатации Крепление стопорными винтами

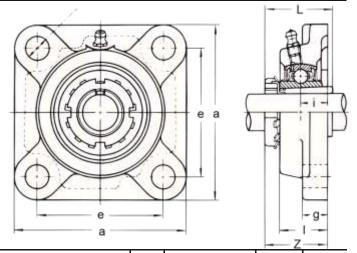


	Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
		IVIIVI	а	е	i	g	I	S	Z	Bi	n	IVIIVI	Nº	1, 7,	,
	UCF X05	25	108	83	18	13	30	12	40.2	38.1	15.9	M10	UC X05	F X05	1.1
	UCF X06	30	117	92	19	14	34	16	44.4	42.9	17.5	M14	UC X06	F X06	1.3
	UCF X07	35	130	102	21	14	38	16	51.2	49.2	19	M14	UC X07	F X07	1.8
	UCF X08	40	137	105	22	14	40	19	52.2	49.2	19	M16	UC X08	F X08	1.8
	UCF X09	45	143	111	23	14	40	19	55.6	51.6	19	M16	UC X09	F X09	2.4
	UCF X10	50	162	130	26	20	44	19	59.4	55.6	22.2	M16	UC X10	F X10	3.6
	UCF X11	55	175	143	29	20	49	19	68.7	65.1	25.4	M16	UC X11	F X11	4.5
	UCF X12	60	187	149	34	21	59	19	73.7	65.1	25.4	M16	UC X12	F X12	5.3
_	UCF X13	65	187	149	34	21	59	19	78.4	74.6	30.2	M16	UC X13	F X13	5.5
	UCF X14	70	197	152	37	24	60	23	81.5	77.8	333	M20	UC X14	F X14	7.7
	UCF X15	75	197	152	40	24	68	23	89.3	82.6	33.3	M20	UC X15	F X15	7.7
_	UCF X16	80	214	171	40	24	70	23	91.6	85.7	34.1	M20	UC X16	F X16	10.2
	UCF X17	85	214	171	40	24	70	23	96.3	96	39.7	M20	UC X17	F X17	10.2
	UCF X18	90	214	171	45	24	76	23	106.1	104	42.9	M20	UC X18	F X18	10.6
	UCF X20	100	268	211	59	31	97	31	127.3	117.5	49.2	M27	UC X20	F X20	16.8

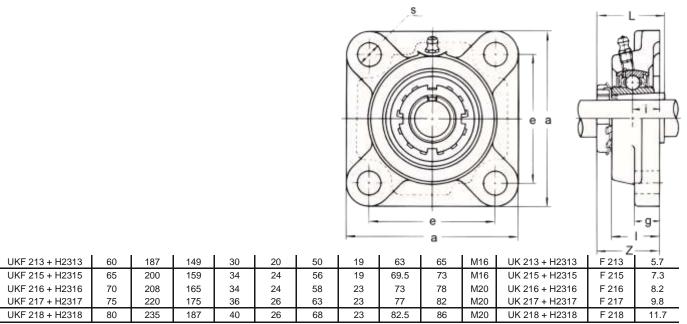
УЗЛЫВКВАДРАТНОМ ФЛАНЦЕ

Тип UCF 300

Для тяжелых условий эксплуатации Крепление стопорными винтами



													- /	_
Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	е	i	g	I	S	L	Bi	n	101101	Nº	, ,	
UCF 305	25	110	80	16	13	29	16	39	38	15	M14	UC 305	F 305	1.2
UCF 306	30	125	95	18	15	32	16	44	43	17	M14	UC 306	F 306	1.7
UCF 307	35	135	100	20	16	36	19	49	48	19	M16	UC 307	F 307	2.1
UCF 308	40	150	112	23	17	40	19	56	52	19	M16	UC 308	F 308	2.9
UCF 309	45	160	125	25	18	44	19	60	57	22	M16	UC 309	F 309	3.6
UCF 310	50	175	132	28	19	48	23	67	61	22	M20	UC 310	F 310	4.7
UCF 311	55	185	140	30	20	52	23	71	66	25	M20	UC 311	F 311	5.7
UCF 312	60	195	150	33	22	56	23	78	71	26	M20	UC 312	F 312	6.8
UCF 313	65	208	166	33	22	58	23	78	75	30	M20	UC 313	F 313	7.8
UCF 314	70	226	178	36	25	61	25	81	78	33	M22	UC 314	F 314	9.6
UCF 315	75	236	184	39	25	66	25	89	82	32	M22	UC 315	F 315	11.7
UCF 316	80	250	196	38	27	68	31	90	86	34	M27	UC 316	F 316	13.7
UCF 317	85	260	204	44	27	74	31	100	96	40	M27	UC 317	F 317	15.2
UCF 318	90	280	216	44	30	76	35	100	96	40	M30	UC 318	F 318	18.8
UCF 319	95	290	228	59	30	94	35	121	103	41	M30	UC 319	F 319	20.7
UCF 320	100	310	242	59	32	94	38	125	108	42	M33	UC 320	F 320	24.8
UCF 321	105	310	242	59	32	94	38	127	112	44	M33	UC 321	F 321	25.6
UCF 322	110	340	266	60	35	96	41	131	117	46	M36	UC 322	F 322	34.7
UCF 324	120	370	290	65	40	110	41	140	126	51	M36	UC 324	F 324	47.2
UCF 326	130	410	320	65	45	115	41	146	135	54	M36	UC 326	F 326	62.7
UCF 328	140	450	350	75	55	125	41	161	145	59	M36	UC 328	F 328	87.0


УЗЛЫВКВАДРАТНОМ ВФЛАНЦЕ

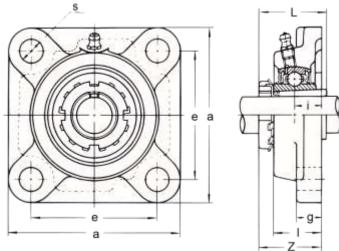
Тип UKF 200 + H

Для нормальных условий эксплуатации Крепление закрепительной втулкой

Узел №	Диам. вала, мм				'азмеры,	М	М			Размер болта, мм	Подшипник №	Корпус №	Вес, кг
	IVIIVI	а	е	i	g	I	S	Z	L	101101	.,	. ,	,
UKF 205 + H2305	20	95	70	16	14	27	12	35.5	35	M10	UK 205 + H2305	F 205	0.87
UKF 206 + H2306	25	108	83	18	14	31	12	39	38	M10	UK 206 + H2306	F 206	1.2
UKF 207 + H2307	30	117	92	19	16	34	14	41.5	43	M12	UK 207 + H2307	F 207	1.5
UKF 208 + H2308	35	130	102	21	16	36	16	45.5	46	M14	UK 208 + H2308	F 208	2.1
UKF 209 + H2309	40	137	105	22	18	38	16	48	50	M14	UK 209 + H2309	F 209	2.5
UKF 210 + H2310	45	143	111	22	18	40	16	49.5	55	M14	UK 210 + H2310	F 210	2.7
UKF 211 + H2311	50	162	130	25	20	43	19	53.5	59	M16	UK 211 + H2311	F 211	3.6
UKF 212 + H2312	55	175	143	29	20	48	19	60	62	M16	UK 212 + 4H2312	F 212	4.6

УЗЛЫВКВАДРАТНОМФЛАНЦЕ

Тип UKF X00 + H

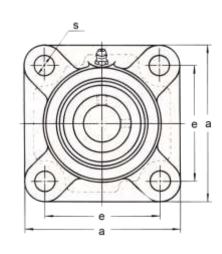

Для умеренных условий эксплуатации Крепление закрепительной втулкой

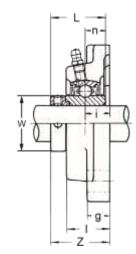
Узел №	Диам. вала, мм	а	e	i	'азмеры, g	М	vi S	Z	L	Размер болта, мм	П	одшипник №	Корпус №	Вес, кг
UKF X05 + H2305	20	108	83	18	13	30	12	39	35	M10	UK	X05 +H2305	F X05 F	1.1
UKF X06 + H2306	25	117	92	19	14	34	16	40.5	38	M14	UK	X06 +H2306	X06	1.4
UKF X07 + H2307	30	130	102	21	14	38	16	44.5	43	M14	UK	X07 +H2307	F X07	1.8
UKF X08 + H2308 UKF X09 + H2309 UKF X10 + H2310	35 40 45	137 143 162	105 111 130	22 23 26	14 14 20	40 40 44	19 19 19	47 49.5 54.5	46 50 55	M16 M16 M16	UK UK	X08 +H2308 X09 +H2309 X10 +H2310	F X08 F X09 F X10	1.8 2.4 3.6
UKF X11 + H2311	50	175	143	29	20	49	19	59	59	M16	UK	X11 +H2311	F X11	4.3
UKF X12 + H2312	55	187	149	34	21	59	19	66	62	M16	UK	X12 +H2312	F X12	5.3
UKF X13 + H2313	60	187	149	34	21	59	19	68	65	M16	UK	X13 +H2313	F X13	5.2
UKF X15 + H2315	65	197	152	40	24	68	23	77	73	M20	UK	X15 +H2315	F X15	7 7
UKF X16 + H2316	70	214	171	40	24	70	23	80	78	M20	UK	X16 +H2316	F X16	10.2
UKF X17 + H2317	75	214	171	40	24	70	23	82.5	82	M20	UK	X17 +H2317	F X17	10.1
UKF X18 + H2318	80	214	171	45	24	76	23	89	86	M20	UK	X18 +H2318	F X18	10.2
UKF X20 + H2320	90	268	211	59	31	97	31	108	97	M27	UK	X20 +H2320	F X20	15.9

УЗЛЫВКВАДРАТНОМФЛАНЦЕ

Тип UKF 300 + H

Для тяжелых условий эксплуатации Крепление закрепительной втулкой



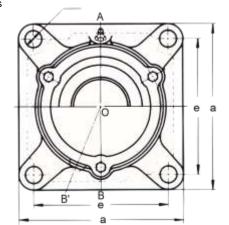

													_
Узел №	Диам. вала, мм			Р	азмеры,	М	М			Размер болта, мм	Подшипник №	Корпус №	Вес, кг
		а	е	i	g	I	S	Z	L				,
UKF 305 + H2305	20	110	80	16	13	29	16	37	35	M14	UK 305 + H2305	F 305	1.2
UKF 306 + H2306	25	125	95	18	15	32	16	40.5	38	M14	UK 306 + H 2306	F 306	1.7
UKF 307 + H2307	30	135	100	20	16	36	19	44.5	43	M16	UK 307 + H 2307	F 307	2.1
UKF 308 + H2308	35	150	112	23	17	40	19	50	46	M16	UK 308 + H 2308	F 308	3.0
UKF 309 + H2309	40	160	125	25	18	44	19	54.5	50	M16	UK 309 + H2309	F 309	3.6
UKF 310 + H2310	45	175	132	28	19	48	23	60	55	M20	UK 310 + H2310	F 310	4.8
UKF 311 + H2311	50	185	140	30	20	52	23	63.5	59	M20	UK 311 + H2311	F 311	5.7
UKF 312 + H2312	55	195	150	33	22	56	23	69	62	M20	UK 312 + H2312	F 312	6.7
UKF 31 3 + H231 3	60	208	166	33	22	58	23	71	65	M20	UK 313 + H2313	F 313	7.7
UKF 315 + H2315	65	236	184	39	25	66	25	81	73	M22	UK 315 + H2315	F 315	1 1.8
UKF 316 + H2316	70	250	196	38	27	68	31	83.5	78	M27	UK 316 + H2316	F 316	13.9
UKF 317 + H2317	75	260	204	44	27	74	31	92	82	M27	UK 317 + H2317	F 317	15.1
UKF 318 + H2318	80	280	216	44	30	76	35	93.5	86	M30	UK 318 + H2318	F 318	19.0
UKF 319 + H2319	85	290	228	59	30	94	35	111	90	M30	UK 319 + H2319	F 319	20.8
UKF 320 + H2320	90	310	242	59	32	94	38	115	97	M33	UK 320 + H 2320	F 320	24.8
UKF 322 + H2322	100	340	266	60	35	96	41	121	105	M36	UK 322 + H2322	F 322	34.8
UKF 324 + H2324	110	370	290	65	40	110	41	130	112	M36	UK 324 + H 2324	F 324	46.7
UKF 326 + H2326	115	410	320	65	45	115	41	134	121	M36	UK 326 + H2326	F 326	63.0
UKF 328 + H2328	125	450	350	75	55	125	41	148	131	M36	UK 328 + H2328	F 328	87.3

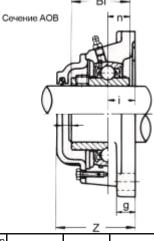
УЗЛЫВКВАДРАТНОМФЛАНЦЕ

* Тип UDF 200

Для нормальных условий эксплуатации Крепление эксцентриковым кольцом

Узел №	Диам. вала, мм				Р	азмеры,	М	М				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	е	i	g	I	S	Z	L	n	W	IVIIVI	Nº	1, 3,	
UDF 204	20	86	64	15	12	25.5	12	34.5	31	11.5	29	M10	UD 204 + EE	F 204	0.59
UDF 205	25	95	70	16	14	27	12	36.5	32	11.5	34	M10	UD 205 + EE	F 205	0.81
UDF 206	30	108	83	18	14	31	12	41	36	13	40	M10	UD 206 + EE	F 206	1.1
UDF 207	35	117	92	19	16	34	14	43.5	38	13.5	48	M12	UD 207 + EE	F 207	1.4
UDF 208	40	130	102	21	16	36	16	46.5	40	14.5	53	M14	UD208 + EE	F 208	2.0
UDF 209	45	137	105	22	18	38	16	49	42	15	57	M14	UD209 + EE	F 209	2.3
UDF 210	50	143	111	22	18	40	16	49.5	43	15.5	63	M14	UD210 + EE	F 210	2.4

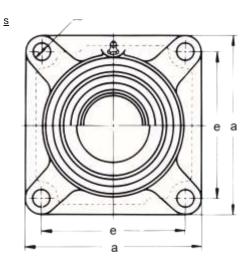

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

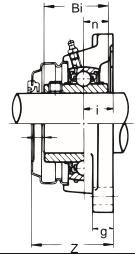

УЗЛЫВКВАДРАТНОМ

ФЛАНЦЕСЧУГУННЫМИ КРЫШКАМИ

Тип CUCF 200C (CE)

Для нормальных условий эксплуатации Крепление стопорными винтами

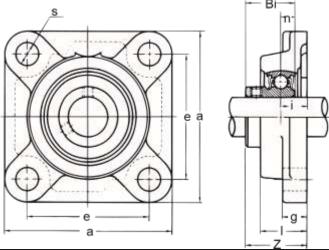

Узе	ел №	Диам.			Р	азмеры,	N	1M			Размер			
		вала,									болта,	Повинавини		
Открытая	Закрытая	MM	а	е		σ.	s	Z	Bi	n	MM	Подшипник №	Корпус №	Вес, кг
крышка	•		а	е	'	g	5		ы	- 11		14=		
крышка	крышка													
CUCF 201C	CUCF 201CE	12	86	64	15	12	12	46	31	12.7	M10	UC 201	CF 204	1.0
011050000	CUCF 202CE	15	86	64	45	12	12	46	31	40.7	M10	110 000	05.004	4.0
CUCF202C	CUCF 202CE	15	86	64	15	12	12	46	31	12.7	IVITO	UC 202	CF 204	1.0
CUCF 203C	CUCF 203CE	17	86	64	15	12	12	46	31	12.7	M10	UC 203	CF 204	1.0
CUCF 204C	CUCF 204CE	20	86	64	15	12	12	46	31	12.7	M10	UC 204	CF 204	1.0
CUCF 204C	COCF 204CE	20	00	04	15	12	12	40	31	12.7	IVITO	UC 204	CF 204	1.0
CUCF 205C	CUCF 205CE	25	95	70	16	14	12	51	34.1	14.3	M10	UC 205	CF 205	1.2
CUCF 206C	CUCF 206CE	30	108	83	18	14	12	55	38.1	15.9	M10	UC 206	CF 206	1.6
0001 2000	0001 2000L	50	100	00	10	1-7	12	00	30.1	10.0	IVIIO	00 200	01 200	1.0
CUCF 207C	CUCF 207CE	35	117	92	19	16	14	59	42.9	17.5	M12	UC 207	CF 207	2.1
CUCF 208C	CUCF 208CE	40	130	102	21	16	16	66	49.2	19	M1	UC 208	CF 208	2.7
2227 2000	200. 20002	.0	.50	.52					.5.2	'`		00 200	0. 200	
	I													


CUCF 209C	CUCF 209CE	45	137	105	22	18	16	67	49.2	19	M14	UC 209	CF 209	3.1
CUCF210C	CUCF 210CE	50	143	111	22	18	16	71	51.6	19	M14	UC 210	CF 210	3.6
CUCF 211C	CUCF 21 ICE	55	162	130	25	20	19	75	55.6	22.2	M16	UC 211	CF 211	4.6
CUCF 212C	CUCF 212CE	60	175	143	29	20	19	86	65.1	25.4	M16	UC 212	CF 212	5.9
CUCF213C	CUCF 213CE	65	187	149	30	20	19	89	65.1	25.4	M16	UC 213	CF 213	7.1
CUCF 214C	CUCF 214CE	70	193	152	31	24	19	98	74.6	30.2	M16	UC 214	CF 214	7.8
CUCF 215C	CUCF 215CE	75	200	159	34	24	19	102	77.8	33.3	M16	UC 215	CF 215	8.6
CUCF 216C	CUCF 216CE	80	208	165	34	24	23	107	82.6	33.3	M20	UC 216	CF 216	10.0
CUCF 217C	CUCF 217CE	85	220	175	36	26	23	111	85.7	34.1	M20	UC 217	CF 217	11.8
CUCF 218C	CUCF 218CE	90	235	187	40	26	23	122	96	39.7	M20	UC 218	CF 218	14.9

УЗЛЫВКВАДРАТНОМ ФЛАНЦЕСКРЫШКАМИИЗ ПРЕССОВАННОЙСТАЛИ

Тип UCF 200C (E)

Для нормальных условий эксплуатации Крепление стопорными винтами

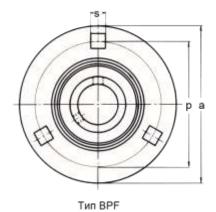


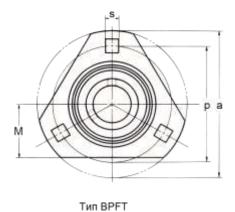
Уз	ел №	Диам. вала,			Pa	азмеры,	N	IM			Размер болта,			
Открытая крышка	Закрытая крышка	ММ	а	е	i	g	S	Z	Bi	n	мм	Подшипник №	Корпус №	Вес, кг
UCF 201C	UCF 201E	12	86	64	15	12	12	43	31	12.7	M10	UC 201	F 204C	0.6 7
UCF 202C	UCF 202E	15	86	64	15	12	12	43	31	12.7	M10	UC 202	F 204C	0.65
UCF 203C	UCF 203E	17	86	64	15	12	12	43	31	12.7	M10	UC 203	F 204C	0.64
UCF 204C	UCF 204E	20	86	64	15	12	12	43	31	12.7	M10	UC 204	F 204C	0.62
UCF 205C	UCF 205E	25	95	70	16	14	12	48	34.1	14.3	M10	UC 205	F 205C	0.86
UCF 206C	UCF 206E	30	108	83	18	14	12	51	38.1	15.9	M10	UC 206	F 206C	1.2
UCF 207C	UCF 207E	35	117	92	19	16	14	54	42.9	17.5	M12	UC 207	F 207C	1.6
UCF 208C	UCF 208E	40	130	102	21	16	16	62	49.2	19	M14	UC 208	F 208C	2.1
UCF 209C	UCF 209E	45	137	105	22	18	16	63	49.2	19	M14	UC 209	F 209C	2.5
UCF 210C	UCF 210E	50	143	1 11	22	18	16	66	51.6	19	M14	UC 210	F 210C	2.6
UCF 211C	UCF 211E	55	162	130	25	20	19	69	55.6	22.2	M16	UC 211	F211C	3.6
UCF 212C	UCF 212E	60	175	143	29	20	19	80	65.1	25.4	M16	UC 212	F 212C	4.8
UCF 213C	UCF 213E	65	187	149	30	20	19	81	65.1	25.4	M16	UC 213	F 21 3C	5.8

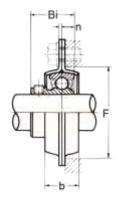
УЗЛЫВКВАДРАТНОМ ФЛАНЦЕ

Тип BF 200

Для легких условий эксплуатации Крепление стопорными винтами

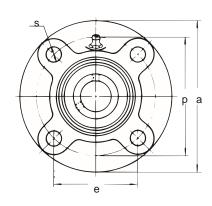


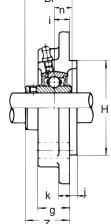

Узел №	Диам. вала, мм				Разме	Размер болта, мм	Подшипник	Корпус №	Вес, кг					
		а	е	i	g	I	S	Z	Bi	n		Nº		,
BF 204 BF 205	20 25	86 95	64 70	15 16	12 14	25.5 27	12 12	32.7 35.5	24.7 27 30.3	7 7.5	M10 M10	B 4 B 5	F 204 F 205	0.55 0.79
BF 206	30	108	83	18	14	31	12	40.3		8	M10	B 6	F 206	1.1
BF 207	35	117	92	19	16	34	14	43.4	32.9	8.5	M12	В7	F 207	1.5


ФЛАНЦЕВЫЕУЗЛЫВКОРПУСЕИЗПРЕССОВАННОЙСТАЛИ

Тип BPF Тип BPFT

Для легких условий эксплуатации Крепление стопорными винтами

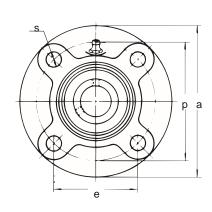

Узе.	п №	Диам. вала, мм				Разме	Размер болта, мм	Подшипник	⁽ Корпус №		Вес, кг					
		IVIIVI	а	р	I	b	S	F (мин.)	М	Bi	n	101101	Nº			
BPF 1	BPFT 1	12	81	63.5	2	14	7	49	29	22	6	M6	B 1	PF 3	PFT 3	0.21
BPF 2	BPFT 2	15	81	63.5	2	14	7	49	29	22	6	M6	B 2	PF 3	PFT 3	0.20
BPF 3	BPFT 3	17	81	63.5	2	14	7	49	29	22	6	M6	B 3	PF 3	PFT 3	0.18
BPF 4	BPFT 4	20	90	71.5	2	16	9	56	33	24.7	7	M8	B 4	PF 4	PFT 4	0.25
BPF 5	BPFT 5	25	95	76	2	18	9	60	35	27	7.5	M8	B 5	PF 5	PFT 5	0.35
BPF 6	BPFT 6	30	113	90.5	2.6	18	1 1	71	38	30.3	8	M10	8 6	PF 6	PFT 6	0.54
BPF 7	BPFT 7	35	120	100	2.6	20	11	81	45	32.9	8.5	M10	В7	PF 7	PFT 7	0.71

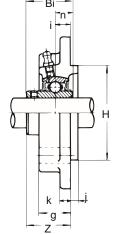

УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ

Тип UCFC 200

Для нормальных условий эксплуатации Крепление стопорными винтами

																	- z -	4
Узел №	Диам. вала, мм					Pas	Размер болта, Подшипник			Корпус №	Вес, кг							
	141141	а	р	е	i	S	j	k	g	I	Z	Bi	n	141141	ľ	1 0	, ,	
UCFC 201	12	100	78	55.1	10	12	5	7	20.5	62	28.3	31	12.7	M10	UC	201	FC 204	0.89
UCFC 202	15	100	78	55.1	10	12	5	7	20.5	62	28.3	31	12.7	M10	UC	202	FC 204	0.87
UCFC 203	17	100	78	55.1	10	12	5	7	20.5	62	28.3	31	12.7	M10	UC	203	FC 204	0.86
UCFC 204	20	100	78	55.1	10	12	5	7	20.5	62	28.3	31	12.7	M10	UC	204	FC 204	0.84
UCFC 205	25	115	90	63.6	10	12	6	7	21	70	29.7	34.1	14.3	M10	UC	205	FC 205	1.1
UCFC 206	30	125	100	70.7	10	12	8	8	23	80	32.2	38.1	15.9	M10	UC	206	FC 206	1.5
UCFC 207	35	135	1 10	77.8	11	14	8	9	26	90	36.4	42.9	17.5	M12	UC	207	FC 207	1.7
UCFC 208	40	145	120	84.8	11	14	10	9	26	100	41.2	49.2	19	M12	UC	208	FC 208	2.1
UCFC 209	45	160	132	93.3	10	16	12	14	26	105	40.2	49.2	19	M14	UC	209	FC 209	3.0
UCFC 210	50	165	138	97.6	10	16	12	14	28	110	42.6	51.6	19	M14	UC	210	FC 210	3.1
UCFC 211	55	185	150	106.1	13	19	12	15	31	125	46.4	55.6	22.2	M16	UC	211	FC 211	3.9
UCFC 212	60	195	160	113.1	17	19	12	15	36	135	56.7	65.1	25.4	M16	UC	212	FC 212	4.4
UCFC 213	65	205	170	120.2	16	19	14	15	36	145	55.7	65.1	25.4	M16	UC	213	FC 213	5.3
UCFC 214	70	215	177	125.1	17	19	14	18	40	150	61.4	74.6	30.2	M16	UC	214	FC 214	6.8
UCFC 215	75	220	<84	130.1	18	19	16	18	40	160	62.5	77.8	33.3	M16	UC	215	FC 215	7.4
UCFC 216	80	240	200	141.4	18	23	16	18	42	170	67.3	82.6	33.3	M20	UC	216	FC 216	9.2
UCFC 217	85	250	208	147.1	18	23	18	20	45	180	69.6	85.7	34.1	M20	UC	217	FC 217	10.6
UCFC 218	90	265	220	155.5	22	23	18	20	50	190	78.3	96	39.7	M20	UC	218	FC 218	12.7

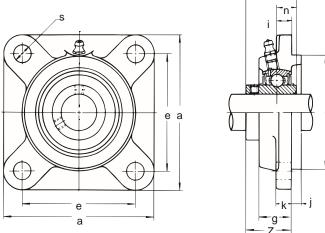

УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ



УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ

Тип UCFC X00

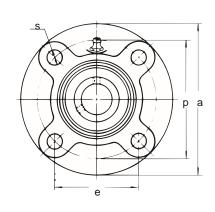
Для умеренных условий эксплуатации Крепление стопорными винтами

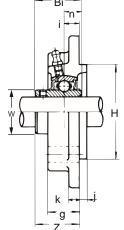


																Ζ	'
Узел №	Диам. вала, мм				Подшипник	Корпус №	Вес, кг										
	101101	а	р	е	i	S	j	k	g	I	Z	Bi	n	ММ	Nº	-1- 7-	,
UCFC X05	25	1 11	92	65	10	9.5	6	9.5	24	76	32.2	38.1	15.9	M8	UC X05	FC X05	1.1
UCFC X06	30	127	105	74 2	8	12	9.5	9.5	22.5	85	33.4	42.9	17.5	M10	UC X06	FC X06	1.4
UCFC X07	35	133	111	78.5	9	12	11	11	26	92	39.2	49.2	19	M10	UC X07	FC X07	1.8
UCFC X08	40	133	111	78.5	9	12	11	11	26	92	39.2	49 2	19	M10	UC X08	FC X08	1.8
UCFC X09	45	155	130	91.9	8	14	12	11	25	108	40 6	51 6	19	M12	UC X09	FC X09	2.5
UCFC XI0	50	162	136	96.2	7	14	16	11	25	118	40.4	55.6	22.2	M12	UC X10	FC X10	2.9
UCFC XI1	55	180	152	107.5	4	16	22	13	26	127	43.7	65.1	25.4	M14	UC X11	FC X11	4.0
UCFC XI2	60	194	165	1 16.7	11	16	20	14	33	140	50.7	75.1	25.4	M14	UC X12	FC X12	4.6
UCFC XI3	65	194	165	116.7	11	16	20	14	33	140	55.4	74.6	30.2	M14	UC X13	FC X13	4.9
UCFC XI4	70	222	190	134.3	14	19	20	14	36	164	58.5	77.8	33.3	M16	UC X14	FC X14	7.4
UCFC XI5	75	222	190	134.3	12	19	22	16	35	164	61.3	82.6	33.3	M16	UC X15	FC X15	7.4
UCFC X16	80	260	219	154.8	10	23	25	19	36	186	61.6	85.7	34.1	M20	UC X16	FC X16	11.5
UCFC XI 7	85	260	219	154.8	10	?3	25	19	36	186	66.3	96	39.7	M20	UC X17	FC X17	11.1
UCFC XI8	90	260	219	154.8	12	23	28	19	43	186	73.1	104	42.9	M20	UC X18	FC X18	11.3
UCFC X20	100	276	238	168.3	22	23	28	22	66	206	90.3	117.5	49.2	M20	UC X20	FC X20	15.9

УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ

Тип UCFS 300

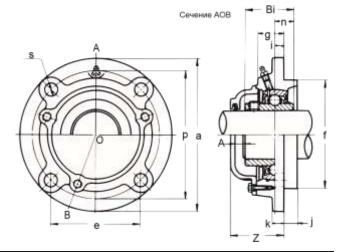

															- Z -	-
Узел №	Диам. вала, мм					Разме	ры,	ММ					Размер болта, мм	Подшипник	Корпус №	Вес, кг
		а	е	i	S	j	k	g	f	Z	Bi	n	181181	Nº	, ,	
UCFS 305	25	110	80	9	16	7	13	22	80	32	38	15	M14	UC 305	FS 305	1.4
UCFS 306	30	125	95	10	16	8	15	24	90	36	43	17	M14	UC 306	FS 306	1.9
UCFS- 307	35	135	100	11	19	9	16	27	100	40	48	19	M16	UC 307	FS 307	2.4
UCFS 308	40	150	112	13	19	10	17	30	115	46	52	19	M16	UC 308	FS 308	3.3
UCFS 309	45	160	125	14	19	11	18	33	125	49	57	22	M16	UC 309	FS 309	4.0
UCFS 310	50	175	132	16	23	12	19	36	140	55	61	22	M20	UC 310	FS 310	5.3
UCFS 311	55	185	140	17	23	13	20	39	150	58	66	25	M20	UC 311	FS 311	6.2
UCFS 312	60	195	150	19	23	14	22	42	160	64	71	26	M20	UC 312	FS 312	7.4
UCFS 313	65	208	166	15	23	18	22	40	175	60	75	30	M20	UC 313	FS 313	8.6
UCFS 314	70	226	178	18	25	18	25	43	185	63	78	33	M22	UC 314	FS 314	11.2
UCFS 315	75	236	184	21	25	18	25	48	200	71	82	32	M22	UC 315	FS 315	12.7
UCFS 316	80	250	196	18	31	20	27	48	210	70	86	34	M27	UC 316	FS 316	14.3
UCFS 317	85	260	204	24	31	20	27	54	220	80	96	40	M27	UC 317	FS 317	17.2
UCFS 318	90	280	216	24	35	20	30	56	240	80	96	40	M30	UC 318	FS 318	20.4
UCFS 319	95	290	228	39	35	20	30	74	250	101	103	41	M30	UC 319	FS 319	23.9
UCFS 320	100	310	242	39	38	20	32	74	260	105	108	42	M33	UC 320	FS 320	27.1
UCFS 321	105	310	242	39	38	20	32	74	260	107	112	44	M33	UC 321	FS 321	28.5
UCFS 322	110	340	266	35	41	25	35	71	300	106	117	46	M36	UC 322	FS 322	36.8
UCFS 324	120	370	290	35	41	30	40	80	330	110	126	51	M36	UC 324	FS 324	50.6
UCFS 326	130	410	320	35	41	30	45	85	360	116	135	54	M36	UC 326	FS 326	67.8
UCFS 328	140	450	350	45	41	30	55	95	400	131	145	59	M36	UC 328	FS 328	96.3



УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ

* Тип UDFC 200

Для нормальных условий эксплуатации Крепление эксцентриковым кольцом

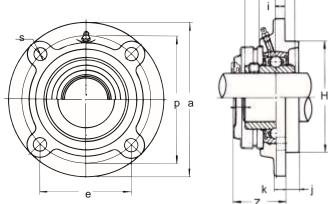


Узел №	Диам. вала, мм						Размер	Ы,	MN	1					Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	р	е	į	S	j	k	g	f	Z	L	n	W	IVIIVI	Nº	,	
UDFC 204	20	100	78	55.1	10	12	5	7	20.5	62	29.5	31	11.5	29	M10	UD 204 +EE	FC 204	0.84
UDFC 205	25	115	90	63.6	10	12	6	7	21	70	30.5	32	11.5	34	M10	UD 205 +EE	FC 205	1.1
UDFC 206	30	125	100	70.7	10	12	8	8	23	80	33	36	13	40	M10	UD 206 +EE	FC 206	1.5
UDFC 207	35	135	110	77.8	11	14	8	9	26	90	35.5	38	13.5	48	M12	UD 207 +EE	FC 207	1.7
UDFC 208	40	145	120	84 8	11	14	10	9	26	100	36.5	40	14.5	53	M12	UD 208 +EE	FC 208	2.0
UDFC 209	45	160	132	93.3	10	16	12	14	26	105	37	42	15	57	M14	UD 209 +EE	FC 209	2.9
UDFC 210	50	165	138	97.6	10	16	12	14	28	110	37.5	43	15.5	63	M14	UD 210 +EE	FC 210	3.1

^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

СЧУГУННЫМИКРЫШКАМИ

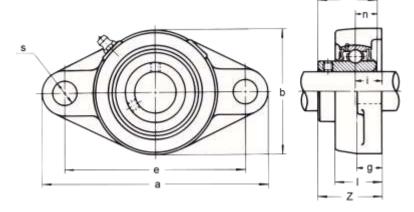
Тип CUCFC 200C (CE)


Узе	ел №	Диам.					Разм	еры,		MM					Размер			,
		вала,													болта,	Подшипник	Корпус №	Вес. кг
Открытая	Закрытая	MM	а	р	е	i	S	j	k	g	Ţ	Z	Bi	n	MM	Nº	Rophyc Nº	Dec, ki
крышка	крышка							-		_								
CUCFC 201C	CUCFC 201CE	12	100	78	55.1	10	12	5	7	20 5	62	41	31	12.7	M10	UC 201	CFC 204	1.2
CUCFC 202C	CUCFC 202CE	15	100	78	55.1	10	12	5	7	20.5	62	41	31	12.7	M10	UC 202	CFC 204	1.2
CUCFC 203C	CUCFC 203CE	17	100	78	55.1	10	12	5	7	20.5	62	41	31	12.7	M10	UC 203	CFC 204	1.2
CUCFC 204C	CUCFC 204CE	20	100	78	55.1	10	12	5	7	20.5	62	41	31	12.7	M10	UC 204	CFC 204	1.2
CUCFC 205C	CUCFC 205CE	25	115	90	63.6	10	12	6	7	21	70	45	34.1	14 3	M10	UC 205	CFC 205	1.5
CUCFC 206C	CUCFC 206CE	30	125	100	70.7	10	12	8	8	23	80	47	38.1	15.9	M10	UC 206	CFC 206	2.0
CUCFC 207C	CUCFC 207CE	35	135	110	77.8	11	14	8	9	26	90	51	42.9	17.5	M12	UC 207	CFC 207	2.4
CUCFC 208C	CUCFC 208CE	40	145	120	84.8	11	14	10	9	26	100	56	49.2	19	M12	UC 208	CFC 208	2.8
CUCFC 209C	CUCFC 209CE	45	160	132	93.3	10	16	12	14	26	105	55	49.2	19	M14	UC 209	CFC 209	3.7
CUCFC 210C	CUCFC 210CE	50	165	138	97. 6	10	16	12	14	28	110	59	51.6	19	M14	UC 210	CFC 210	4.2
CUCFC 211C	CUCFC 211CE	55	185		106.1	13	19	12	15	31	125	63	55.6	22.2	M16	UC 211	CFC 211	5.0
CUCFC 212C	CUCFC 212CE	60	195	160	113.1	17	19	12	'5	36	135	74	65 1	25.4	M16	UC 212	CFC 212	6.0
CUCFC 213C	CUCFC 213CE	65	205	170	120.2	16	19	14	15	36	145	75	65 1	25.4	M16	UC 213	CFC 213	7.0
CUCFC 214C	CUCFC 214CE	70	215	177	125.1	17	19	14	18	40	150	84	74 6	30.2	M16	UC 214	CFC 214	8.2
CUCFC 215C	CUCFC 215CE	75	220		130.1	18	19	16	18	40	160	86	77.8	33.3	M16	UC 215	CFC 215	8.8
CUCFC 216C	CUCFC 216CE	80	240	200	141.4	18	23	16	18	42	170	91	82.6	33.3	M20	UC 216	CFC 216	11.3
CUCFC 217C	CUCFC 217CE	85	250		147.1	18	23	18	20	45	180	93	85.7	34.1	M20	UC 217	CFC 217	12 8
CUCFC 218C	CUCFC 218CE	90	265	220	155.5	22	23	18	20	50	190	104	96	39.7	M20	UC 218	CFC 218	15.9

УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ

УЗЛЫВОФЛАНЦЕВОЙГИЛЬЗЕ СКРЫШКАМИИЗПРЕССОВАННОЙ СТАЛИ

Тип UCFC 200C(E)

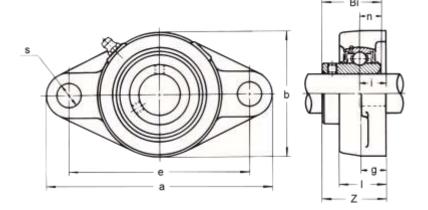

Узе.	л №	Диам. вала,					Разм	іеры,		ММ					Размер болта,	Подшипник		
Открытая крышка	Закрытая крышка	ММ	а	р	е	i	S	j	k	g	f	Z	Bi	n	ММ	Nº	Корпус №	Вес, кг
UCFC 201C	UCFC 201E	12	100	78	55.1	10	12	5	7	20.5	62	38	31	12.7	M10	UC 201	FC 204C	0.92
UCFC 202C	UCFC 202E	15	100	78	55.1	10	12	5	7	20.5	62	38	31	12.7	M10	UC 202	FC 204C	0.90
UCFC 203C	UCFC 203E	17	100	78	55.1	10	12	5	7	20.5	62	38	31	12.7	M10	UC 203	FC 204C	0.89
UCFC 204C	UCFC 204E	20	100	78	55.1	10	12	5	7	20.5	62	38	31	12.7	M10	UC 204	FC 204C	0.87
UCFC 205C	UCFC 205E	25	115	90	63.6	10	12	6	7	21	70	42	34.1	14.3	M10	UC 205	FC 205C	1.1
UCFC 206C	UCFC 206E	30	125	100	70.7	10	12	8	8	23	80	43	38.1	15.9	M10	UC 206	FC 206C	1.5
UCFC 207C	UCFC 207E	35	135	110	77.8	11	14	8	9	26	90	46	42.9	17.5	M12	UC 207	FC 207C	1.8
UCFC 208C	UCFC 208E	40	145	120	84.8	11	14	10	9	26	100	52	49.2	19	M12	UC 208	FC 208C	2.1
UCFC 209C	UCFC 209E	45	160	132	93.3	10	16	12	14	26	105	51	49.2	19	M14	UC 209	FC 209C	3.1
UCFC 210C	UCFC 210E	50	165	138	97.6	10	16	12	14	28	110	54	51.6	19	M14	UC 210	FC 210C	3.3
UCFC 211C	UCFC 211E	55	185	150	106 1	13	19	12	15	31	125	57	55.6	22.2	M16	UC 211	FC 211C	4.0
UCFC 212C	UCFC 212E	60	195	160	113 1	17	19	12	15	36	135	68	65.1	25.4	M16	UC 212	FC 212C	4.6
UCFC 213C	UCFC 213E	65	205	170	120.2	16	19	14	15	36	145	67	65.1	25.4	M16	UC 213	FC 213C	5.5

УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕ

Тип UCFL 200

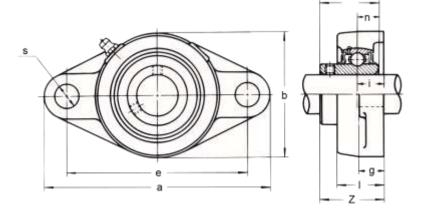
Для нормальных условий эксплуатации

\/a = Na	Диам. вала, мм				Pa	азмеры,	М	М				Размер болта, мм	Полимпымк	Kanana Na	Dan
Узел №	IVIIVI	а	е	i	g	I	S	b	Z	Bi	n	101101	Nº	Корпус №	Вес, кг
UCFT 201	12	112	76.2	17.1	11	25	10.5	60	33.1	26	10	M 8	UCW 201	FT 203	0.48
UCFT 202	15	112	76.2	17.1	11	25	10.5	60	33.1	26	10	M 8	UCW 202	FT 203	0.47
UCFT 203	17	112	76.2	17.1	11	25	10.5	60	33.1	26	10	M 8	UCW 203	FT 203	0.46
UCFT 204	20	112	89.7	14.3	11	25	10.5	60	32.6	31	12.7	M 8	UC 204	FT 204	0.46
UCFT 205	25	124	98.8	15.9	13	27	12.5	70	35.6	34.1	14.3	M10	UC 205	FT 205	0.64
UCFT 206	30	141	116.7	17.9	13	30	12.5	83	40.1	38.1	15.9	M10	UC 206	FT 206	0.96


UCFT 207	35	156	130.2	19.1	14	34	14	95	44.5	42.9	17.5	M12	UC 207	FT 207	1.4
UCFT 208	40	171	143.7	21	14	38	14	105	51.2	49.2	19	M12	UC 208	FT 208	1.8
UCFT 209	45	179	148.4	21.8	14	40	16	111	52	49.2	19	M14	UC 209	FT 209	2.0
UCFT 210	50	189	157.2	22.2	14	40	16	116	54.8	51.6	19	M14	UC 210	FT 210	2.1
UCFT 211	55	216	184.2	25.4	21	44	18	133	58.8	55.6	22.2	M16	UC 211	FT 211	3.2

Крепление стопорными винтами

Узел №	Диам. вала, мм				Pa	азмеры,	М	М				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	е	i	g	I	s	b	Z	Bi	n	IVIIVI	Nº		
UCFL 201	12	113	90	15	12	25.5	12	60	33.3	31	12.7	M10	UC 201	FL 204	0.50
UCFL 202	15	113	90	15	12	25.5	12	60	33.3	31	12.7	M10	UC 202	FL 204	0 48
UCFL 203	17	113	90	15	12	25.5	12	60	33.3	31	12.7	M10	UC 203	FL 204	0 47
UCFI 204	20	113	90	15	12	25.5	12	60	33.3	31	12.7	M10	UC 204	FL 204	0.45
UCFL 205	25	130	99	16	14	27	16	68	35.7	34.1	14.3	M14	UC 205	FL 205	0.63
UCFL 206	30	148	117	18	14	31	16	80	40.2	38.1	15.9	M14	UC 206	FL 206	0 96
UCFL 207	35	161	130	19	16	34	16	90	44.4	42.9	17.5	M14	UC 207	FL 207	1.2
UCFL 208	40	175	144	21	16	36	16	100	51.2	49.2	19	M14	UC 208	FL 208	1 6
UCFL 209	45	188	148	22	18	38	19	108	52.2	49.2	19	M16	UC 209	FL 209	1.9
UCFL 210	50	197	157	22	18	40	19	115	54.6	516	19	M16	UC 210	FL 210	2.2
UCFL 211	55	224	184	25	20	43	19	130	58.4	55.6	22.2	M16	UC 211	FL 211	3.2
UCFL 212	60	250	202	29	20	48	23	140	68.7	65.1	25.4	M20	UC 212	FL 212	4.1
UCFL 213	65	258	210	30	24	50	23	155	69.7	65.1	25.4	M20	UC 213	FL 213	5.1
UCFL 214	70	265	216	31	24	54	23	160	75 4	74.6	30.2	M20	UC 214	FL 214	6.0
UCFL 215	75	275	225	34	24	56	23	165	78 5	77.8	33.3	M20	UC 215	FL 215	6.5
UCFL 216	80	290	233	34	24	58	25	180	83.3	82.6	33.3	M22	UC 216	FL 216	8.0
UCFL 217	85	305	248	36	26	63	25	190	87.6	85.7	34.1	M22	UC 217	FL 217	9.5
UCFL 218	90	320	265	40	26	68	25	205	96.3	96	39.7	M22	UC 218	FL218	11.9


УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕ

* Тип UCFT 200

УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕ

Тип UCFL X00

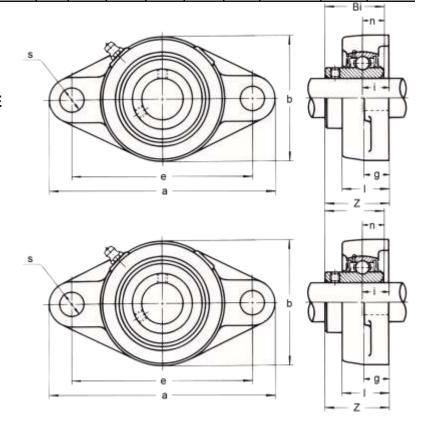
Узел №	Диам.				Р	азмеры,	М	М				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	вала, мм	0	е	i	g	I	S	b	Z	Bi	n	IVIIVI	Nº	., ,	,
UCFL 305	25	150	113	16	13	29	19	80	39	38	15	M16	UC 305	FL 305	1.1
UCFL 306	30	180	134	18	15	32	23	90	44	43	17	M20	UC 306	FL 306	1.5
UCFL 307	35	185	141	20	16	36	23	100	49	48	19	M20	UC 307	FL 307	1.8
UCFL 308	40	200	158	23	17	40	23	112	56	52	19	M20	UC 308	FL 308	2.4
UCFL 309	45	230	177	25	18	44	25	125	60	57	22	M22	UC 309	FL 309	3.4
UCFL 310	50	240	187	28	19	48	25	140	67	61	22	M22	UC 310	FL 310	4.3
UCFL 311	55	250	198	30	20	52	25	150	71	66	25	M22	UC 311	FL 311	5.1
UCFL 312	60	270	212	33	22	56	31	160	78	71	26	M27	UC 312	FL 312	6.2
UCFL 313	65	295	240	33	25	58	31	175	78	75	30	M27	UC 313	FL 313	7.4
UCFL 314	70	315	250	36	28	61	35	185	81	78	33	M30	UC 314	FL 314	9.0
UCFL 315	75	320	260	39	30	66	35	195	89	82	32	M30	UC 315	FL 315	10.0
UCFL 316	80	355	285	38	32	68	38	210	90	86	34	M33	UC 316	FL 316	12.6
UCFL 317	85	370	300	44	32	74	38	220	100	96	40	M33	UC 317	FL 317	14.5
UCFL 318	90	385	315	44	36	76	38	235	100	96	40	M33	UC 318	FL 318	17.1
UCFL 319	95	405	330	59	40	94	41	250	121	103	41	M36	UC 319	FL 319	21.8
UCFL 320	100	440	360	59	40	94	44	270	125	108	42	M39	UC 320	FL 320	26.5

UCFL 321	105	440	360	59	40	94	44	270	127	112	44	M39	UC 321	FL 321	28.2
UCFL 322	110	470	390	60	42	96	44	300	131	117	46	M39	UC 322	FL 322	33.1
UCFL 324	120	520	430	65	48	110	47	330	140	126	51	M42	UC 324	FL 324	45.7
UCFL 326	130	550	460	65	50	115	47	360	146	135	54	M42	UC 326	FL 326	57.5
UCFL 328	140	600	500	75	60	125	51	400	161	145	59	M45	UC 328	FL 328	79.7

Для умеренных условий эксплуатации Крепление стопорными винтами

Vara Ne	Диам. вала, мм					Размеры,	M	IM				Размер болта, мм	Попилапили	Kanania Na	D
Узел №	IVIIVI	а	е	i	g	Ι	S	b	Z	Bi	n	IVIIVI	Nº	Корпус №	Вес, кг
UCFL X05	25	141	117	18	13	30	12	83	40.2	38.1	15.9	M10	UC X05	FL X05	1.0
UCFL X06	30	156	130	19	14	34	16	95	44.4	42.9	17.5	M14	UC X06	FL X06	1.4
UCFL X07	35	171	144	21	14	38	16	105	51.2	49.2	19	M14	UC X07	FL X07	1.9
UCFL X08	40	179	148	22	14	40	16	111	52.2	49.2	19	M14	UC X08	FL X08	2.0
UCFL X09	45	189	157	23	14	40	16	116	55.6	51.6	19	M14	UC X09	FL X09	2.4
UCFL X10	50	216	184	26	20	44	19	133	59.4	55.6	22.2	M16	UC X10	FL X10	3.6

УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕ

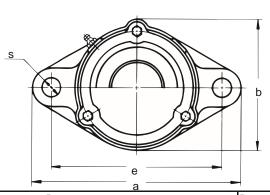

Тип UCFL 300

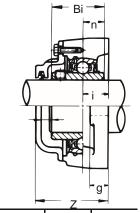
Для тяжелых условий эксплуатации Крепление стопорными винтами

УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕ

* Тип UDFL 200

Для нормальных условий эксплуатации Крепление эксцентриковым кольцом

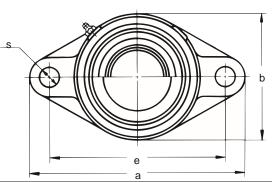

	Диам.					Разме	ры,	ММ					Разме р болта.			
Узел №	вала, мм	а	е	i	g	ı	S	b	Z	L	n	W	мм	Подшипник №	Корпус №	Вес, кг
UDFL 204	20	113	90	15	12	25.5	12	60	34.5	31	11.5	29	M10	UD 204 + EE	FL 204	0.45
UDFL 205	25	130	99	16	14	27	16	68	36.5	32	1 1.5	34	M14	UD 205 + EE	FL 205	0.62
UDFL 206	30	148	117	18	14	31	16	80	41	36	13	40	M14	UD 206 + EE	FL 206	0.95
UDFL 207	35	161	130	19	16	34	16	90	43.5	38	13.5	48	M14	UD 207 + EE	FL 207	1.2
UDFL 208	40	175	144	21	16	36	16	100	46.5	40	14.5	53	M14	UD 208 + EE	FL 208	1.5
UDFL 209	45	188	148	22	18	38	19	108	49	42	15	57	M16	UD 209 + EE	FL 209	1.9
UDFL 210	50	197	157	22	18	40	19	115	49.5	43	15.5	63	M16	UD 210 + EE	FL 210	2.1

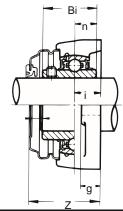

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕСЧУГУННЫМИ КРЫШКАМИ

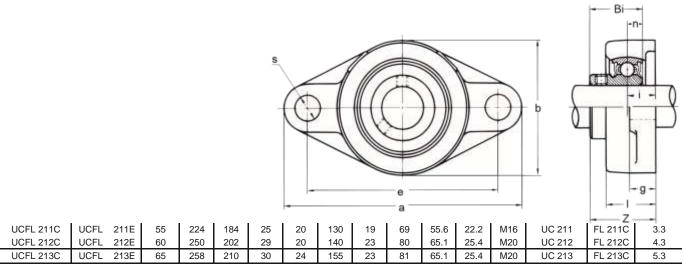
Тип CUCFL 200C (CE)

Для нормальных условий эксплуатации Крепление стопорными винтами




Узе	ел №	Диам.				Раз	меры,		MM				Размер			
		вала, мм											болта, мм	Подшипник	Корпус №	Вес, кг
Открытая крышка	Закрытая крышка	IVIIVI	а	е	i	g	b	r	S	I	Bi	n	IVIIVI	Nº	1, 3,	,
CHOEL 2040	CUCFL 201CE	40	440	90	45	12	00	30	12	46	31	40.7	1440	110 004	OFI 004	0.0
CUCFL 201C		12	113		15	. –	66					12.7	M10	UC 201	CFL 204	0.8
CUCFL 202C	CUCFL 202CE	15	113	90	15	12	66	30	12	46	31	12.7	M10	UC 202	CFL 204	0.8
CUCFL 203C	CUCFL 203CE	17	113	90	15	12	66	30	12	46	31	12.7	M10	UC 203	CFL 204	0.8
CUCFL 204C	CUCFL 204CE	20	113	90	15	12	66	30	12	46	31	12.7	M10	UC 204	CFL 204	0.8
CUCFL 205C	CUCFL 205CE	25	130	99	16	14	73	34	16	51	34.1	14.3	M1 4	UC 205	CFL 205	1.0
CUCFL 206C	CUCFL 206CE	30	148	117	18	14	84	40	16	55	38.1	15.9	M1 4	UC 206	CFL 206	1.5
CUCFL 207C	CUCFL 207CE	35	161	130	19	16	94	45	16	59	42.9	17.5	M1 4	UC 207	CFL 207	1.9
CUCFL 208C	CUCFL 208CE	40	175	144	21	16	104	50	16	66	49.2	19	M14	UC 208	CFL 208	2.3
CUCFL 209C	CUCFL 209CE	45	188	148	22	18	113	54	19	67	49.2	19	M16	UC 209	CFL 209	2.7
CUCFL 210C	CUCFL 210CE	50	197	157	22	18	120	58	19	71	51.6	19	M16	UC 210	CFL 210	3.2
CUCFL 211C	CUCFL 211CE	55	224	184	25	20	134	65	19	75	55 6	22.2	M16	UC 211	CFL 211	4.3
CUCFL 212C	CUCFL 212CE	60	250	202	29	20	144	70	23	86	65.1	25.4	M20	UC 212	CFL 212	5.4
CUCFL 213C	CUCFL 213CE	65	258	210	30	24	157	78	23	89	65.1	25.4	M20	UC 213	CFL 213	6.7
CUCFL 214C	CUCFL 214CE	70	265	216	31	24	163	80	23	98	74.6	30.2	M20	UC 214	CFL 214	7.4
CUCFL 215C	CUCFL 215CE	75	275	225	34	24	168	83	23	102	77.8	33.3	M20	UC 215	CFL 215	7.9
CUCFL 216C	CUCFL 216CE	80	290	233	34	24	188	90	25	107	82.6	33 3	M22	UC 216	CFL 216	10.2
CUCFL 217C	CUCFL 217CE	85	305	248	36	26	198	95	25	111	85.7	34.1	M22	UC 217	CFL 217	11.8
CUCFL 218C	CUCFL 218CE	90	320	265	40	26	211	103	25	122	96	39.7	M22	UC 218	CFL 218	15.0

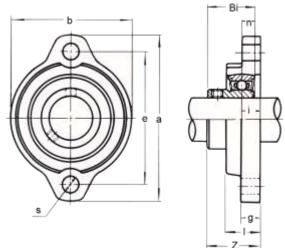
УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕ


СКРЫШКАМИИЗПРЕССОВАННОЙСТАЛИ

Тип UCFL 200C (E)

Узе.	л№	Диам. вала, мм				Разме	ры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
Открытая крышка	Закрытая крышка	IVIIVI	а	е	i	g	b	S	Z	Bi	n	IVIIVI	Nº	Kopiiyo N=	200, 14
UCFL 201C	UCFL 201E	12	113	90	15	12	60	12	43	31	12.7	M10	UC 201	FL 204C	0.53
UCFL 202C	UCFL 202E	15	113	90	15	12	60	12	43	31	12.7	M10	UC 202	FL 204C	0.51
UCFL 203C	UCFL 203E	17	113	90	15	12	60	12	43	31	12.7	M10	UC 203	FL 204C	0.50
UCFL 204C	UCFL 204E	20	113	90	15	12	60	12	43	31	12.7	M10	UC 204	FL 204C	0.48
UCFL 205C	UCFL 205E	25	130	99	16	14	68	16	47	34.1	14.3	M14	UC 205	FL 205C	0.67
UCFL 206C	UCFL 206E	30	148	117	18	14	80	16	49	38.1	15.9	M14	UC 206	FL 206C	1.0
UCFL 207C	UCFL 207E	35	161	130	19	16	90	16	54	42.9	17.5	M14	UC 207	FL 207C	1.3
UCFL 208C	UCFL 208E	40	175	144	21	16	100	16	61	49.2	19	M14	UC 208	FL 208C	1.7
UCFL 209C	UCFL 209E	45	188	148	22	18	108	19	63	49.2	19	M16	UC 209	FL 209C	2.0
UCFL 210C	UCFL 210E	50	197	157	22	18	115	19	66	51.6	19	M16	UC 210	FL 210C	2.3

УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕ

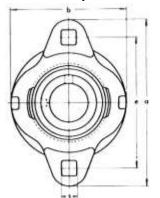

Тип BFL 200

\/ No	Диам. вала, мм				P	азмеры,	N	1М				Размер болта, мм	Полимпник	Kanana Na	D
Узел №	, www	а	е	i	g	I	S	b	Z	Bi	n		Nº	Корпус №	Вес, кг
BFL 204 BFL 205 BFL 206	20 25 30	113 130 148	90 99 117	15 16 18	12 14 14	25.5 27 31	12 16 16	60 68 80	32.7 35.5 40.3	24.7 27 30.3	7 7.5 8	M10 M14 M14	B 4 B 5 B 6	Fl 204 FL 205 FL 206	0.41 0.60 0.88
BFL 207	35	161	130	19	16	34	16	90	43.4	32.9	8.5	M14	В7	FL 207	1.2

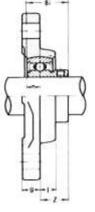
УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕ

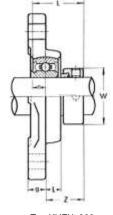
Тип BLFL

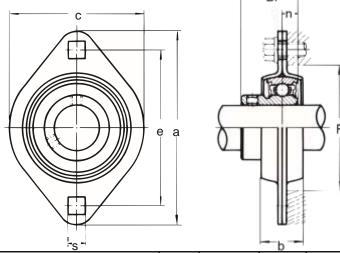
Для легких условий эксплуатации Крепление стопорными винтами


															_
V No	Диам. вала, мм				Pa	азмеры,	N	IM				Размер болта, мм	Подшипник	IG Na	D
Узел №		а	е	i	g	I	S	b	Z	Bi	n	101101	Nº	Корпус №	Вес, кг
BLFL 1J BLFL 2J BLFL 3J	12 15 17	81 81 81	63.5 63.5 63.5	9.5 9.5 9.5	9.5 9.5 9.5	18 18 18	7 7 7	56 56 56	25.5 25.5 25.5	22 22 22	6 6 6	M6 M6 M6	B 1 B 2 B 3	LFL 3J LFL 3 J LFL 3J	0.28 0.27 0.25
BLFL 4J BLFL 5J BLFL 6J	20 25 30	90 95 113	71.5 76 90.5	11 11 12	11 11 12	20 20 22.5	10 10 12	63 69 79	28.7 30.5 34.3	24.7 27 30.3	7 7.5 8	M 8 M 8 M10	B 4 B 5 B 6	LFL 4J LFL 5J LFL 6J	0.30 0.40 0.58
BLFL 7J	35	122	100	13	13	24	12	89	37.4	32.9	8.5	M10	В7	LFL 7J	0.81

УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕВОМКОРПУСЕИЗКОВКОГОЧУГУНА


- * Тип BFX 200
- * Тип KHFX 200


Для легких условий эксплуатации

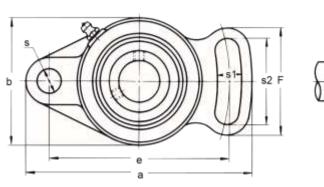

Тип KHFX 200 Крепление эксцент. кольцом

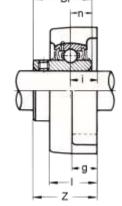
Узе	л №							Раз	меры,		ММ								Ве	ес, кг
В комплекте с типом В	В комплекте с типом КН200 + AE	Диам. вала, мм	а	е	g	ı	s	b	BFX	z KHFX	о (мин.)	w	Bi	I	BFX	n KHFX	Размер болта, мм	Корпус №	BFX	KHFX
BFX 201	KHFX 201	12	81	64	10	8	7	56	16	22	48	28.6	22	28.6	6	6.5	M 6	FX 203K		0.26
BFX 202	KHFX 202	15	81	64	10	8	7	56	16	22	48	28.6	22	28.6	6	6.5	M6	FX 203K	0.21	0.25
BFX 203	KHFX 203	17	81	64	10	8	7	56	16	22	48	28.6	22	28.6	6	6.5	M6	FX 203K	0.19	0.24
BFX 204	KHFX 204	20	90	71	11	9	9	63	17.5	23.5	55	33.3	24.7	31	7	7.5	M8	FX 204K	0.28	0.28
BFX 205	KHFX 205	25	95	76	11	9	9	69	19.3	22.8	60	38.1	27	31	7.5	7.5	M8	FX 205K	0.34	0.36
BFX 206	KHFX 206	30	113	90	12	11	10	79	22.5	26.5	71	44.5	30.3	35.7	8	9	M10	FX 206K	0.50	0.56
BFX 207	KHFX 207	35	122	100	13	11	10	89	24.5	29.5	82	55.6	32.9	38.9	8.5	9.5	M10	FX 207K	0.66	0.79

УЗЛЫВДВУХБОЛТОВОМ ФЛАНЦЕВОМКОРПУСЕИЗ ПРЕССОВАННОЙСТАЛИ

Тип BPFL

Для легких условий эксплуатации Крепление стопорными винтами

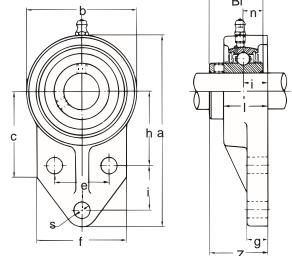



Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник	Корпус №	Вес, кг
	IVIIVI	а	е	I	b	S	С	F (мин.)	Bi	n	101101	Nº		,
BPFL 1	12	81	63.5	2	14	7	59	49	22	6	M6	8 1	PFL 3	0.25
BPFL 2	15	81	63.5	2	14	7	59	49	22	6	M6	B 2	PFL 3	0.24
BPFL 3	17	81	63.5	2	14	7	59	49	22	6	M6	В3	PFL 3	0.22
BPFL 4	20	90	71.5	2	16	9	67	56	24.7	7	M8	B 4	PFL 4	0.29
BPFL 5	25	95	76	2	18	9	71	60	27	7:5	M8	B 5	PFL 5	0.36
BPFL 6	30	113	90.5	2.6	18	11	84	71	30.3	8	M10	B 6	PFL 6	0.56
BPFL 7	35	125	100	2.6	20	11	94	81	32.9	8.5	M10	В7	PFL 7	0.70

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

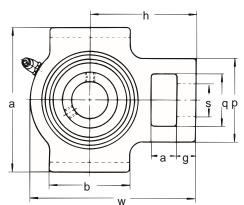
УЗЛЫВРЕГУЛИРУЕМОМ ФЛАНЦЕ

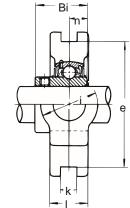
Тип UCFA 200



Узел №	Диам. вала, мм						Размер)Ы,	MN	1					Размер болта, мм	Подшипник	Корпус №	Вес, кг
7 0071 11=	IVIIVI	а	е	i	g	I	S	S ₁	S ₂	b	f	Z	Bi	n	IVIIVI	Nº	nopiny o ri-	200,
UCFA 201	12	102	78	15	12	25.5	10	10	40	60	54	33.3	31	12.7	M8	UC 201	FA 204	0.50
UCFA 202	15	102	78	15	12	25.5	10	10	40	60	54	33.3	31	12.7	M8	UC 202	FA 204	0.49
UCFA 203	17	102	78	15	12	25.5	10	10	40	60	54	33.3	31	12.7	M8	UC 203	FA 204	0.48
UCFA 204	20	102	78	15	12	25.5	10	10	40	60	54	33.3	31	12.7	M8	UC 204	FA 204	0.46
UCFA 205	25	125	98	16	14	27	12	13	51	68	65	35.7	34.1	14.3	M10	UC 205	FA 205	0.66
UCFA 206	30	144	117	18	14	31	12	13	58	80	72	40.2	38.1	15.9	M10	UC 206	FA 206	1.0
UCFA 207	35	161	130	19	16	34	14	15	66	90	82	44.4	42.9	17.5	M12	UC 207	FA 207	1.4
UCFA 208	40	175	144	21	16	36	14	15	71	100	87	51.2	49.2	19	M12	UC 208	FA 208	1.7
UCFA 209	45	181	148	22	18	38	16	17	72	108	90	52.2	49.2	19	M14	UC 209	FA 209	2.0
UCFA 210	50	190	157	22	18	40	16	17	76	115	9 4	54.6	51.6	19	M14	UC 210	FA 210	2.4
UCFA 211	55	219	184	25	20	43	16	17	86	130	104	58.4	55.6	22.2	M14	UC 211	FA 211	3.4

УЗЛЫВТРЕХБОЛТОВОМФЛАНЦЕ СКРОНШТЕЙНОМ

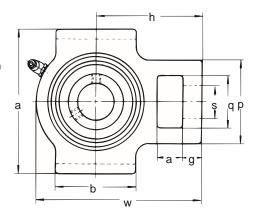

Тип UCFK 200

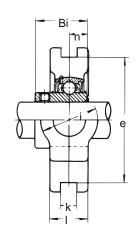


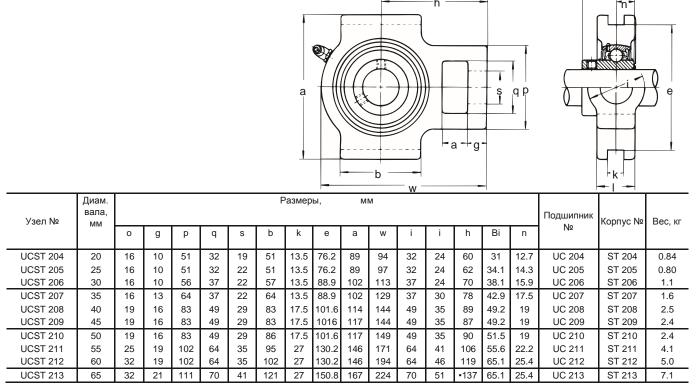
Узел №	Диам. вала, мм						Разм	иеры,		ММ						Размер болта, мм	Подшипник	Корпус №	Вес, кг
		а	h	е	j	i	g		С	S	b	f	Z	Bi	n		Nº		
UCFK 201	12	110	42	32	27	15	13	25.5	52	10	62	52	33.3	31	12.7	M8	UC 201	FK 204	0.60
UCFK 202	15	110	42	32	27	15	13	25.5	52	10	62	52	33.3	31	12.7	M8	UC 202	FK 204	0.58
UCFK 203	17	110	42	32	27	15	13	25.5	52	10	62	52	33.3	31	12.7	M8	UC 203	FK 204	0.57
UCFK 204	20	110	42	32	27	15	13	25.5	52	10	62	52	33.3	31	12.7	M8	UC 204	FK 204	0.55
UCFK 205	25	116	45	34	27	16	13	27	52	10	68	56	35.7	34.1	14.3	M8	UC 205	FK 205	0.66
UCFK 206	30	130	50	40	29	18	13	31	55	10	78	65	40.2	38.1	15.9	M8	UC 206	FK 206	0.93
UCFK 207	35	144	55	46	32	19	15	34	62	10	90	70	44.4	42.9	17.5	M8	UC 207	FK 207	1.3
UCFK 208	40	164	60	50	41	21	16	36	72	12	100	78	51.2	49.2	19	M10	UC 208	FK 208	1.7
UCFK 209	45	174	65	54	43	22	18	38	76	12	106	80	52.2	49.2	19	M10	UC 209	FK 209	1.9
UCFK 210	50	184	68	58	46	22	18	40	82	12	112	86	54.6	51.6	19	M10	UC 210	FK 210	2.2

UCT 200

	Диам. вала.							Размер	ΣЫ,	ММ		VV							
Узел №	MM				1												Подшипник №	Корпус №	Вес, кг
		0	g	р	q	S	b	k	е	а	W	i	I	h	Bi	n		.,-	
UCT 201	12	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12.7	UC 201	T 204	0.79
UCT 202	15	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12.7	UC 202	T 204	0.77
UCT 203	17	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12.7	UC 203	T 204	0.76
UCT 204	20	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12.7	UC 204	T 204	0.74
UCT 205	25	16	10	51	32	19	51	12	76	89	97	32	24	62	34.1	14.3	UC 205	T 205	0.82
UCT 206	30	16	10	56	37	22	57	12	89	102	113	37	28	70	38.1	15.9	UC 206	T 206	1.3
UCT 207	35	16	13	64	37	22	64	12	89	102	129	37	30	78	42.9	17.5	UC 207	T 207	1.6
UCT 208	40	19	16	83	49	29	83	16	102	114	144	49	33	88	49.2	19	UC 208	T 208	2.4
UCT 209	45	19	16	83	49	29	83	16	102	117	144	49	35	87	49.2	19	UC 209	T 209	2.4
UCT 210	50	19	16	83	49	29	86	16	102	117	149	49	37	90	51.6	19	UC 210	T 210	2.5
UCT 211	55	25	19	102	64	35	95	22	130	146	171	64	38	106	55.6	22.2	UC 211	T 211	4.0
UCT 212	60	32	19	102	64	35	102	22	130	146	194	64	42	119	65.1	25.4	UC 212	T 212	5.1
UCT 213	65	32	21	111	70	41	121	26	151	167	224	70	44	137	65.1	25.4	UC 213	T 213	7.0
UCT 214	70	32	21	111	70	41	121	26	151	167	224	70	46	137	74.6	30.2	UC 214	T 214	7.1
UCT 215	75	32	21	111	70	41	121	26	151	167	232	70	48	140	77.8	33.3	UC 215	T 215	7.5
UCT 216	80	32	21	111	70	41	121	26	165	184	235	70	51	140	82.6	33.3	UC 216	T 216	8.5
UCT 217	85	38	29	124	73	48	157	30	173	198	260	73	54	162	85.7	34.1	UC 217	T 217	11.2

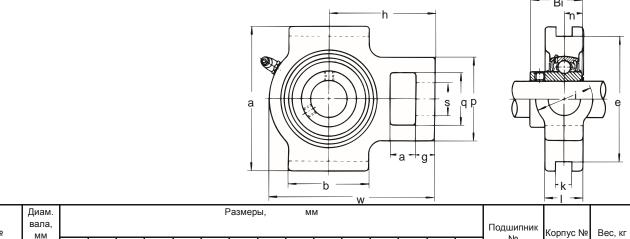



Тип


УЗЛЫНАТЯЖЕНИЯ

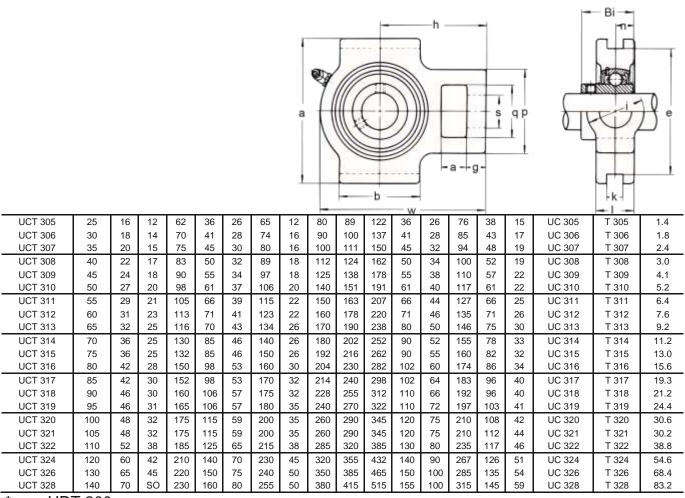
* Тип UCST 200

Для нормальных условий эксплуатации Крепление стопорными



^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип UCT X00


	диам.						F	<i>'</i> азмер	Ы,	MI	М								
Узел №	вала, мм																Подшипник	Корпус №	Вес, кг
	IVIIVI	0	g	р	q	S	b	h	е	а	W	j	I	h	Bi	n	Nº	1, 7,	,
UCT X05	25	16	10	56	37	22	57	12	89	102	113	37	28	70	381	15.9	UC X05	T X05	1.3
UCT X06	30	16	13	64	37	22	64	12	89	102	129	37	30	78	42.9	17.5	UC X06	T X06	1.6
UCT X07	35	19	15	83	49	29	83	16	102	114	144	49	36	88	49.2	19	UC X07	T X07	2.6
UCT X08	40	19	15	83	49	29	83	16	102	117	144	49	36	87	49.2	19	UC X08	T X08	2.6
UCT X09	45	19	16	83	49	29	86	16	102	117	149	49	38	90	51.6	19	UC X09	T X09	2.8
UCT X10	50	25	19	102	64	35	95	22	130	146	171	64	42	106	55.6	22.2	UC X10	T X10	4.4
UCT X11	55	32	19	102	64	35	102	22	130	146	194	64	44	119	65.1	25.4	UC X11	T X11	5.2
UCT X12	60	32	21	111	70	41	121	26	151	167	224	70	48	137	65.1	25.4	UC X12	T X12	7.2
UCT X13	65	32	21	111	70	41	121	26	151	167	224	70	48	137	74.6	30.2	UC X13	T X13	7.4
UCT X14	70	32	21	111	70	41	121	26	151	167	232	70	48	140	77.8	33.3	UC X14	T X14	7.7
UCT X15	75	32	21	111	70	41	121	28	165	184	235	70	48	140	82.6	33.3	UC X15	T X15	8.4
UCT X16	80	38	28	124	73	48	157	28	173	198	260	73	54	162	85.7	34.1	UC X16	T X16	11.3
UCT X17	85	38	28	124	73	48	157	28	173	198	1260	73	54	162	96	39.7	UC X17	T X17	11.0

Тип UCT 300

Узел №	Диам. вала, мм							Размер	ΣЫ,	MN	1						Подшипник	Корпус №	Вес, кг
	141141	0	g	р	q	S	b	k	е	а	W	i	Ι	h	Bi	n	Nº	. ,	ŕ

Тип

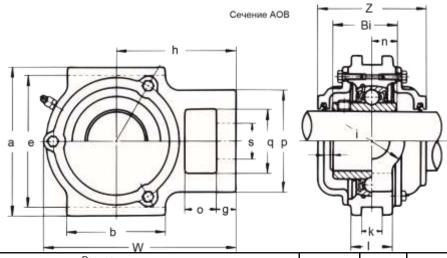
* UDT 200

Для нормальных условий эксплуатации Крепление эксцентриковым кольцом

Узел №	Диам.	Размеры, мм	Подшипник №	Корпус №	Вес, кг
--------	-------	-------------	-------------	----------	---------

ASAHI

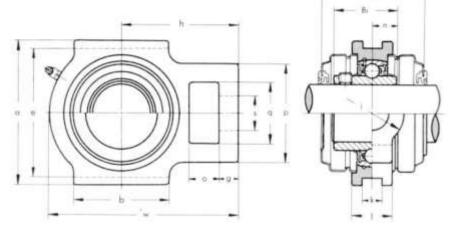
																			i i		
		вала,	0	g	р	q	S	b	k	е	а	W	i	- 1	h	L	n	W			
_		MM																			
_	UDT 204	20	16	10	51	32	19	51	12	76	89	94	32	21	61	31	11.5	29	UD 204 + EE	T 204	0.74
	UDT 205	25	16	10	51	32	19	51	12	76	89	97	32	24	62	32	11.5	34	UD 205 + EE	T 205	0.81
_	UDT 206	30	16	10	56	37	22	57	12	89	102	113	37	28	70	36	13	40	UD 206 + EE	T 206	1.3
_	UDT 207	35	16	13	64	37	22	64	12	89	102	129	37	30	78	38	13.5	48	UD 207 + EE	T 207	1.6
	UDT 208	40	19	16	83	49	29	83	16	102	114	144	49	33	88	40	14.5	53	UD 208 + EE	T 208	2.3
_	UDT 209	45	19	16	83	49	29	83	16	102	117	144	49	35	87	42	15	57	UD 209 + EE	T 209	2.4
_	UDT 210	50	19	16	83	49	29	86	16	102	117	149	49	37	90	43	15.5	63	UD 210 + EE	T 210	2.4


^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип

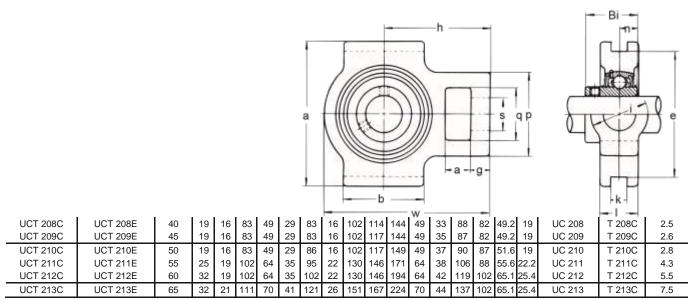
СЧУГУННЫМИКРЫШКАМИ

Тип CUCT 200C (CE) Для нормальных условий эксплуатации Крепление стопорными винтами

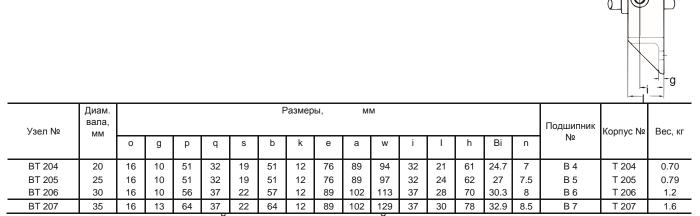

	Узе	л №	Диам.							Разм	еры,		ММ									
			вала, мм																	Подшипник	Корпус №	Вес, кг
От	крытая	Закрытая	IVIIVI	0	g	р	q	S	b	k	е	а	W	i	1	h	Z	Bi	n	Nº	rtopilyo 11=	D00, KI
кр	ышка	крышка																				
CUC	CT 201C	CUCT 201CE	12	16	10	51	32	19	51	12	76	89	96	32	21	61	62	31	12.7	UC 201	CT 204	1.2
CUC	CT 202C	CUCT 202CE	15	16	10	51	32	19	51	12	76	89	96	32	21	61	62	31	12.7	UC 202	CT 204	1.2
CUC	CT 203C	CUCT 203CE	17	16	10	51	32	19	51	12	76	89	96	32	21	61	62	31	12.7	UC 203	CT 204	1.2
CUC	CT 204C	CUCT 204CE	20	16	10	51	32	19	51	12	76	89	96	32	21	61	62	31	12.7	UC 204	CT 204	1.2
CUC	CT 205C	CUCT 205CE	25	16	10	51	32	19	51	12	76	89	100	32	24	62	70	34.1	14.3	UC 205	CT 205	1.5
CUC	CT 206C	CUCT 206CE	30	16	10	56	37	22	57	12	89	102	113	37	28	70	74	38.1	15.9	UC 206	CT 206	2.0
CUC	CT 207C	CUCT 207CE	35	16	13	64	37	22	64	12	89	102	129	37	30	78	80	42.9	17.5	UC 207	CT 207	2.6
CUC	CT 208C	CUCT 208CE	40	19	16	83	49	29	83	16	102	114	144	49	33	88	90	49.2	19	UC 208	CT 208	3.4
CUC	CT 209C	CUCT 209CE	45	19	16	83	49	29	83	16	102	117	145	49	35	87	90	49.2	19	UC 209	CT 209	3.6
CUC	CT 210C	CUCT 210CE	50	19	16	83	49	29	86	16	102	117	151	49	37	90	98	51.6	19	UC 210	CT 210	4.1
CUC	CT 211C	CUCT 211CE	55	25	19	102	64	35	95	22	130	146	174	64	38	106	100	55.6	22.2	UC 211	CT 211	5.6
CUC	CT 212C	CUCT 212CE	60	32	19	102	64	35	102	22	130	146	194	64	42	119	114	65.1	25.4	UC 212	CT 212	7.0
CUC	CT 213C	CUCT 213CE	65	32	21	111	70	41	121	26	151	167	224	70	44	137	118	65.1	25.4	UC 213	CT 213	9.2
CUC	CT 214C	CUCT 214CE	70	32	21	111	70	41	121	26	151	167	224	70	46	137	134	74.6	302	UC 214	CT 214	9.8
CUC	CT 215C	CUCT 215CE	75	32	21	1 11	70	41	121	26	151	167	232	70	48	140	136	77.8	33.3	UC 215	CT 215	10.2
CUC	CT 216C	CUCT 216CE	80	32	21	111	70	41	121	26	165	184	236	70	51	140	146	82.6	33.3	UC 216	CT 216	12.4
CUC	CT 217C	CUCT 217CF	85	38	29	124	73	48	157	30	173	198	264	73	54	162	150	85.7	34 1	UC 217	CT 217	15 4

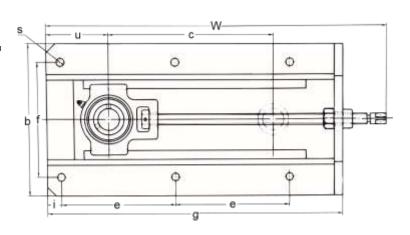
УЗЛЫНАТЯЖЕНИЯС КРЫШКАМИ ИЗ ПРЕССОВАННОЙ СТАЛИ

Тип UCT 200C (E)


Для нормальных условий эксплуатации

Крепление стопорными винтами

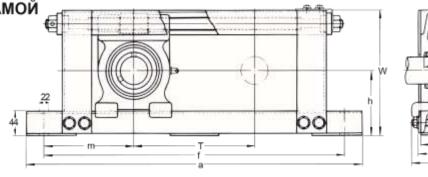

Узє	ел №	Диам. вала, мм						F	Разме	еры,		MN	1						Подшипник	Корпус №	Вес, кг
Открытая крышка	Закрытая крышка	IVIIVI	0	g	р	q	S	b	k	е	а	W	i	I	h	Z	Bi	n	Nº	порпуотт	200, 14
UCT 201C	UCT 201E	12	16	10	51	32	19	51	12	76	89	94	32	21	61	56	31	12.7	UC 201	T 204C	0.85
UCT 202C	UCT 202E	15	16	10	51	32	19	51	12	76	89	94	32	21	61	56	31	12.7	UC 202	T 204C	0.83
UCT 203C	UCT 203E	17	16	10	51	32	19	51	12	76	89	94	32	21	61	56	31	12.7	UC 203	T 204C	0.82
UCT 204C	UCT 204E	20	16	10	51	32	19	51	12	76	89	94	32	21	61	56	31	12.7	UC 204	T 204C	0.80
UCT 205C	UCT 205E	25	16	10	51	32	19	51	12	76	89	97	32	24	62	63	34.1	14.3	UC 205	T 205C	0.89
UCT 206C	UCT 206E	30	16	10	56	37	22	57	12	89	102	113	37	28	70	65	38.1	15.9	UC 206	T 206C	1.4
UCT 207C	UCT 207E	35	16	13	64	37	22	64	12	89	102	129	37	30	78	70	42.9	17.5	UC 207	T 207C	1.8


BT 200

Для легких условий эксплуатации Крепление стопорными винтами

УЗЛЫНАТЯЖЕНИЯСРАМОЙИЗПРЕССОВАННОЙСТАЛИ

Тип UCT 200 + WB Для нормальных условий эксплуатации Крепление стопорными винтами


Тип

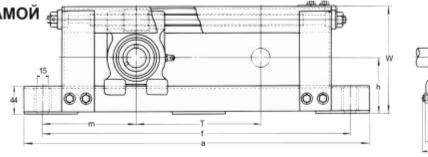
Узел №	Диам. вала, мм						F	азмер	Ы,	МІ	М						Размер болта, мм	Рама №	Вес, кг
	IVIIVI	а	b	С	е	f	g	i	I	j	S	u	W	Z	Bi	n	IVIIVI		
UCT 201 + WB	12	317	199	150	117	154	6	29	50	19	12	83	367	47.3	31	12.7	M10	WB 205-150	5.0
UCT 202 + WB	15	317	199	150	1 17	154	6	29	50	19	12	83	367	47.3	31	12.7	M10	WB 205-150	5.0
UCT 203 + WB	17	317	199	150	1 17	154	6	29	50	19	12	83	367	47.3	31	12.7	M10	WB 205-150	5.0
UCT 204 + WB	20	317	199	150	117	154	6	29	50	19	12	83	367	47.3	31	12.7	M10	WB 205-150	5.0
UCT 205 + WB	25	317	199	150	117	154	6	29	50	19	12	83	368	48.7	34.1	14.3	M10	WB 205-150	5.0
UCT 206 + WB	30	337	212	150	127	166	6	30	50	19	12	95	396	52.2	38.1	15.9	M10	WB 206-150	5.9
UCT 207 + WB	35	429	212	230	173	166	6	30	50	19	12	99	490	55.4	42.9	17.5	M10	WB 207-230	79
UCT 208 + WB	40	520	233	300	219	192	6	30	50	22	15	108	591	60.2	49.2	19	M12	WB 210-300	11.1
UCT 209 + WB	45	520	233	300	219	192	6	30	50	22	15	108	590	60.2	49.2	19	M12	WB 210-300	11.1
UCT 210 + WB	50	520	233	300	219	192	6	30	50	22	15	108	593	62.6	51.6	19	M12	WB 210-300	11.2
UCT 211 + WB	55	542	301	300	230	240	6	38	65	22	15	114	631	71.4	55.6	22.2	M12	WB 211-300	17.3
UCT 212 + WB	60	568	301	300	243	240	6	38	65	22	15	127	657	77.7	65.1	25.4	M12	WB 212-300	18.7
UCT 213 + WB	65	606	322	300	260	260	6	38	65	22	15	144	699	77.7	65.1	25.4	M12	WB 213-300	23.4

УЗЛЫ НАТЯЖЕНИЯ С РАМОЙ

* Тип UCTU 200 + WU

Для нормальных условий эксплуатации

V No	Диам. вала, мм			Pa	азмеры,	N	IM			Размер болта, мм	Подшипни	IG No	D Ma	
Узел №	IVIIVI	T	а	f	h	m	W	Bi	n	IVIIVI	к№	Корпус №	Рама №	Вес, кг
UCTU208 + WU 500		500	870	810									WU 208-500	19.0
UCTU208 + WU 600		600	970	910									WU 208-600	20.6
UCTU208 + WU 700	40	700	1070	1010	97	155	190	49.2	19	M18	UC 208	TU 208	WU 208-700	22.2
UCTU208 + WU 800		800	1170	1110									WU 208-800	23.8
UCTU208 + WU 900		900	1270	1210									WU 208-900	25.3
UCTU209 + WU 500		500	880	820									WU 209-500	19.7
UCTU209 + WU 600		600	980	920									WU 209-600	21.3
UCTU209 + WU 700	45	700	1080	1020	102	160	200	49.2	19	M18	UC 209	TU 209	WU 209-700	22.9
UCTU209 + WU 800		800	1180	1 120									WU 209-800	24.5
UCTU209 + WU 900		900	1280	1220									WU 209-900	26.1
UCTU210 + WU 500		500	890	830									WU 210-500	20.5
UCTU210 + WU 600		600	990	930									WU 210-600	22.2
UCTU210 + WU 700	50	700	1090	1030	107	165	210	51.6	19	M18	UC 210	TU 210	WU 210-700	23.8
UCTU210 + WU 800		800	1 190	1 130									WU 210-800	25.4
UCTU2I0 + WU 900		900	1290	1230									WU 210-900	27.0
UCTU211 + WU 500		500	910	850									WU 211-500	22.4
UCTU211 + WU 600		600	1010	950									WU 211-600	23.7
UCTU211 + WU 700	55	700	1110	1050	115	175	230	55.6	22.2	M18	UC 21 1	TU 211	WU 211-700	25.8
UCTU211 + WU 800		800	1210	1150									WU 211-800	27.4
UCTU211 + WU 900		900	1310	1250									WU 211-900	29.1
UCTU212 + WU 500		500	920	860									WU 212-500	23.9
UCTU212 + WU 600		600	1020	960									WU 212-600	25.6
UCTU212 + WU 700	60	700	1120	1060	120	180	240	65.1	25.4	M18	UC 212	TU 212	WU 212-700	27.2

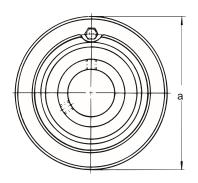

-60

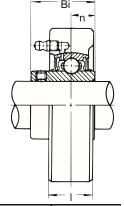
UCTU212 + WU 800	800	1220	1160					WU 212-800	28.9
UCTU212 + WU 900	900	1320	1260					WU 212-900	30.6

УЗЛЫ НАТЯЖЕНИЯ С РАМОЙ

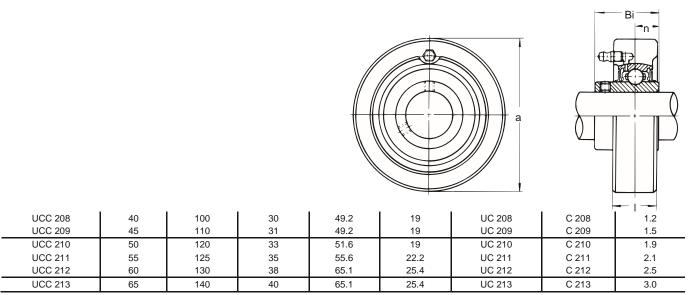
* Тип UCTL 200 + WL

Для нормальных условий эксплуатации Крепление стопорными винтами




V. No.	Диам. вала, мм			Pa	азмеры,	M	IM			Размер болта, мм	Подшипни	IK Na	D. Alb	
Узел №	IVIIVI	Т	а	f	h	m	w	Bi	n	IVIIVI	к №	Корпус №	Рама №	Вес, кг
UCTL 204 + WL 100 UCTL 204 + WL 200 UCTL 204 + WL 300 UCTL 204 + WL 400	20	100 200 300 400	430 530 630 730	370 470 570 670	77	135	146	31	12.7	M12	UC 204	TL 204	WL 204-100 WL 204-200 WL 204-300 WL 204-400	5.6 6.3 7.0 7.7
UCTL 205 + WL 100 UCTL 205 + WL 200 UCTL 205 + WL 300 UCTL 205 + WL 400	25	100 200 300 400	440 540 640 740	380 480 580 680	82	140	156	34.1	14.3	M12	UC 205	TL 205	WL 205-100 WL 205-200 WL 205-300 WL 205-400	6.0 6.7 7.4 8.1
UCTL 206 + WL 100 UCTL 206 + WL 200 UCTL 206 + WL 300 UCTL 206 + WL 400	30	100 200 300 400	450 550 650 750	390 490 590 690	87	145	166	38.1	15.9	M12	UC 206	TL 206	WL 206-100 WL 206-200 WL 206-300 WL 206-400	6.5 7.2 7.9 8.6
UCTL 207 + WL 100 UCTL 207 + WL 200 UCTL 207 + WL 300 UCTL 207 + WL 400	35	100 200 300 400	460 560 660 760	400 500 600 700	92	150	176	42.9	17.5	M12	UC 207	TL 207	WL 207-100 WL 207-200 WL 207-300 WL 207-400	7.1 7.8 8.5 9.2
UCTL 208 + WL 100 UCTL 208 + WL 200 UCTL 208 + WL 300 UCTL 208 + WL 400	40	100 200 300 400	470 570 670 770	410 510 610 710	97	155	186	49.2	19	M12	UC 208	TL 208	WL 208-100 WL 208-200 WL 208-300 WL 208-400	7.8 8.5 9.2 9.9
UCTL 209 + WL 100 UCTL 209 + WL 200 UCTL 209 + WL 300 UCTL 209 + WL 400	45	100 200 300 400	480 580 680 780	420 520 620 720	100	160	192	49.2	19	M12	UC 209	TL 209	WL 209-100 WL209-200 WL 209-300 WL 209-400	8.2 8.9 9.6 10.3

^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

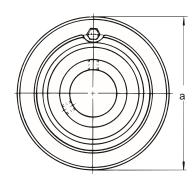

УЗЛЫВГИЛЬЗАХ

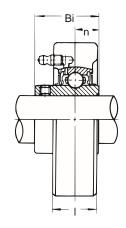
Тип UCC 200

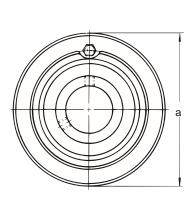
Узел №	Диам. вала, мм		Размеры,	ММ		Подшипник №	Корпус №	Вес, кг
		а	I	Bi	n	1		
UCC 201	12	72	20	31	12.7	UC 201	C 204	0.54
UCC 202	15	72	20	31	12.7	UC 202	C 204	0.52
UCC 203	17	72	20	31	12.7	UC 203	C 204	0.51
UCC 204	20	72	20	31	12.7	UC 204	C 204	0.49
UCC 205	25	80	22	34.1	14.3	UC 205	C 205	0.65
UCC 206	30	85	27	38.1	15.9	UC 206	C 206	0.82
UCC 207	35	90	28	42.9	17.5	UC 207	C 207	0.93

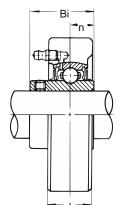
УЗЛЫВГИЛЬЗАХ

* Тип UCLC 200


Узел №	Диам. вала, мм		Размеры,	ММ		Подшипник №	Корпус №	Вес, кг
3 0031 14=		а	I	Bi	n	-	Rophyo 11=	200, KI
UCLC 201	12	68.26	22.22	26	10	UCW 201	LC 203	0.51
UCLC 202	15	68.26	22.22	26	10	UCW 202	LC 203	0.50
UCLC 203	17	68.26	22.22	26	10	UCW 203	LC 203	0.49
UCLC 204	20	74.61	22.22	31	12.7	UC 204	LC 204	0.58
UCLC 205	25	79.38	26.19	34.1	14.3	UC 205	LC 205	0.73
UCLC 206	30	88.90	27.78	38.1	15.9	UC 206	LC 206	0.95
UCLC 207	35	98.42	30.96	42.9	17.5	UC 207	LC 207	1.2
UCLC 208	40	106.36	37.31	49.2	19	UC 208	LC 208	1.7
UCLC 209	45	111.12	36.51	49.2	19	UC 209	LC 209	1.7
UCLC 210	50	1 15.89	37.31	51.6	19	UC 210	LC 210	1.9
UCLC 211	55	125.41	40.48	55.6	22.2	UC 211	LC 211	2.4
UCLC 212	60	149.22	41.28	65.1	25.4	UC 212	LC 212	3.8
UCLC 213	65	149.22	41.28	65.1	25.4	UC 213	LC 213	3.6


^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.


УЗЛЫВГИЛЬЗАХ

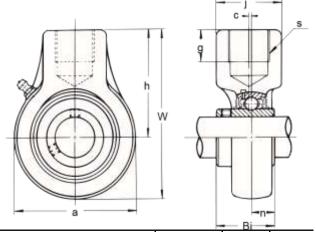

* Тип UCC X00

Для умеренных условий эксплуатации Крепление стопорными винтами

	Диам. вала,		Размеры,	ММ				
Узел №	MM -	а	I	Bi	n	. Подшипник №	Корпус №	Вес, кг
UCC X05	25	90	27	38.1	15.9	UC X05	C X05	1.0
UCC X06	30	100	30	42.9	17.5	UC X06	C X06	1.3
UCC X07	35	110	34	49.2	19	UC X07	C X07	1.9
UCC X08	40	120	38	49.2	19	UC X08	C X08	2.3
UCC X09	45	120	38	51.6	19	UC X09	C X09	2.3
UCC X10	50	130	40	55.6	22.2	UC X10	C X10	2.8
UCC X11	55	150	42	65.1	25.4	UC X11	C X11	4.7
UCC X12	60	160	44	65.1	25.4	UC X12	C X12	5.1

УЗЛЫВГИЛЬЗАХ

* Тип UCC 300

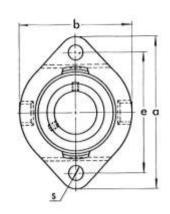

Узел № Диам. Размеры, мм	Подшипник №	Корпус №	Вес, кг
--------------------------	-------------	----------	---------

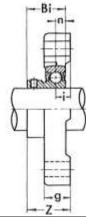
	вала,	а	I	Bi	n			
	MM							
UCC 305	25	90	26	38	15	UC 305	C 305	1.1
UCC 306	30	100	28	43	17	UC 306	C 306	1.3
UCC 307	35	110	32	48	19	UC 307	C 307	1.8
UCC 308	40	120	34	52	19	UC 308	C 308	2.2
UCC 309	45	130	38	57	22	UC 309	C 309	2.7
UCC 310	50	140	40	61	22	UC 310	C 310	3.3
UCC 311	55	150	44	66	25	UC 311	C 311	3.9
UCC 312	60	160	46	71	26	UC 312	C 312	4.8
UCC 313	65	170	50	75	30	UC 313	C 313	5.7
UCC 314	70	180	52	78	33	UC 314	C 314	6.6
UCC 315	75	190	55	82	32	UC 315	C 315	7.7
UCC 316	8C	200	60	86	34	UC 316	C 316	8.9
UCC 317	85	215	64	96	40	UC 317	C 317	11.2
UCC 318	90	225	66	96	40	UC 318	C 318	12.3
UCC 319	95	240	72	103	41	UC 319	C 319	15.2
UCC 320	100	260	75	108	42	UC 320	C 320	19.2
UCC 321	105	260	75	112	44	UC 321	C 321	18.9
UCC 322	no	300	80	117	46	UC 322	C 322	28.1
UCC 324	120	320	90	126	51	UC 324	C 324	35.0
UCC 326	130	340	100	135	54	UC 326	C 326	42.2
UCC 328	140	360	100	145	59	UC 328	C 328	48.9

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

ПОДШИПНИКОВЫЕУЗЛЫ НАПОДВЕСКЕ

Тип UCECH 200


Узел №	Диам. вала, мм				Разм	еры,	ММ				Подшипник №	Корпус №	Вес, кг
		а	w	h	j	S	g	Bi	n	С			ŕ
UCECH 205	25	70	99	64	40	PF 3/4	19	34.1	14.3	0	UC 205	ECH 205	0.74
UCECH 206	30	80	104	64	40	PF 3/4	19	38.1	15.9	0	UC 206	ECH 206	0.91
UCECH 207	35	92	116	70	40	PF 3/4	19	42.9	17.5	0	UC 207	ECH 207	1.2
UCECH 208	40	96	121	73	40	PF 3/4	19	49.2	19	2	UC 208	ECH 208	1.4
UCECH 209	45	108	136	82	48	PF 1	21	49.2	19	4	UC 209	ECH 209	1.8
UCECH 210	50	114	140	83	48	PF 1	21	51.6	19	5	UC 210	ECH 210	1.9

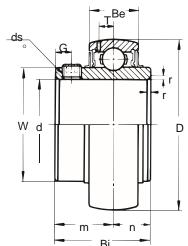

УЗЛЫВДВУХБОЛТОВОМФЛАНЦЕ

Тип BLCTE 200K

Для легких условий эксплуатации Крепление стопорными винтами

Предусмотрен также узел типа KHLCTE 200K, включающий в себя подшипник с эксцентриковым запорным кольцом.

												1.4	da .	
Узел №	Диам. вала, мм				Разме	еры,	ММ				Размер болта, мм	Подшипник №	Корпус №	Вес, кг
	101101	а	е	i	g	S	b	Z	Bi	n	IVIIVI		-1- 7-	,
BICTE 201K	12	81	635	8.5	15	7	59	24.5	22	6	M 6	B 1	LCTE 203K	0.22
BICTE 202K	15	81	635	8.5	15	7	59	24.5	22	6	M 6	B 2	LCTE 203K	0.22
BLCTE 203K	17	81	635	8.5	15	7	59	24.5	22	6	M 6	B 3	LCTE 203K	0.22
BICTE 204K	20	90	71.4	9.5	17	10	67	27.2	24.7	7	M 8	B 4	LCTE 204K	0.40
BLCTE 205K	25	97	762	10	17.5	10	71	29.5	27	7.5	M 8	B 5	LCTE 205K	0 49
BLCTE 206K	30	113	905	11.5	20.5	12	84	33.8	30.3	8	M10	B 6	LCTE 206K	0.77
BLCTE 207K	35	126	100	12.5	22	12	94	36.9	32.9	85	M10	В7	LCTE 207K	0.98



Тип 2-120

UC 200

Длянормальныхусловийэксплуатации Креплениестопорнымивинтами

(Метрическаясерия)

												-		
					Р	ізмеры,	MM					Номин. базов	вая нагрузка,	
												К	г	
Подшипник №														Вес, кг
	d	D	Bi	Be	r	n	m	G	ds	Т	W	Динамич.	Статич.	
												С	Co	
UC 201	12	47	31	17	1	12.7	18.3	4.5	M 6 x 0.75	4.5	29	1310	630	0.21
UC 202	15	47	31	17	1	12.7	18.3	4.5	M6 x 0.75	4.5	29	1310	630	0.19
UC 203	17	47	31	17	1	12.7	18.3	4.5	M6 x 0.75	4.5	29	1310	630	0.18
UC 204	20	47	31	17	1.5	12.7	18.3	4.5	M6 x 0.75	4.5	29	1310	630	0.16
UC 205	25	52	34.1	17	1.5	14.3	19.8	5	M6 x 0.75	4.5	34	1430	710	0.19
UC 206	30	62	38.1	19	1.5	15.9	22.2	5	M6 x 0.75	5.1	40.5	2000	1020	0.31
UC 207	35	72	42.9	20	2	17.5	25.4	6	M8 x 1	5.8	48	2640	1400	0.48
UC 208	40	80	49.2	21	2	19	30.2	8	M8 x 1	6.2	53	2990	1600	0.62
UC 209	45	85	49.2	22	2	19	30.2	8	M 8 x 1	6.5	57.3	3350	1810	0.67
UC 210	50	90	51.6	23	2	19	32.6	9	M10 x 1.25	6.5	63	3600	2010	0.78
UC 211	55	100	55.6	24	2.5	22.2	33.4	9	M10 x 1.25	7.3	70	4400	2550	1.03
UC 212	60	1 10	65.1	26	2.5	25.4	39.7	10	M10 x 1.25	7.7	77	5350	3150	1.45
UC 213	65	120	65.1	27	2.5	25.4	39.7	10	M10 x 1.25	8.3	82.1	5850	3500	1.71
UC 214	70	125	74.6	29	2.5	30.2	44.4	12	M12 x 1.5	8.7	87	6350	3800	2.06
UC 215	75	130	77.8	30	2.5	33-3	44.5	14	M12 x 1.5	9.2	91.5	6750	4200	2.22
UC 216	80	140	82.6	32	3	33.3	49.3	14	M12 x 1.5	9.6	98.5	7400	4550	2.82
UC 217	85	150	85.7	34	3	34.1	51.6	14	M12 x 1.5	10.5	105	8500	5500	3.38
UC 218	90	160	96	36	3	39.7	56.3	15	M12 x 1.5	11.1	111.5	9750	6300	4.34

(Дюймоваясерия)

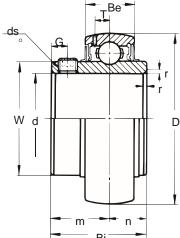
Тип Подшипник №					Разм	іеры,	дюймы		<u>2-120</u>				вая нагрузка, нты	Вес, фунты
	d	D	Bi	Be	r	n	m	G	ds(UNF)		W	Динамич. С	Статич. Со	
UC 201-8	1/2													0.46
UC 202-9 202-10	5/8	1.8504	1.220	0.669	0.039	0.500	0.720	0.177	1/4-28	0.177	1.142	2890	1390	0.42
UC 203-11	11/16													0.40
UC 204-12	3/4	1.8504	1.220	0.669	0.059	0.500	0.720	0.177	1/4-28	0.177	1.142	2890	1390	0.35
UC 205-14 205-15 205-16	7/8 15/16 1	2.0472	1.342	0.669	0.059	0.563	0.780	0.197	1/4-28	0.177	1.339	3150	1560	0.42
UC 206-17 206-18 206-19	1 1/16 1 1/8 1 3/16	2.4409	1.500	0.748	0.059	0.626	0.874	0.197	1/4-28	0.201	1.594	4410	2250	0.68
UC 207-20 207-21 207-22 207-23	1 1/4 1 5/16 1 3/8 1 /16	2.8346	1.689	0.787	0.079	0.689	1.000	0.236	5/16-24	0.228	1.890	5820	3090	1.06
UC 208-24 208-25	1 1/2 1 9/16	3.1496	1.937	0.827	0.079	0.748	1.189	0.315	5/16-24	0.244	2.087	6590	3530	1.37
UC 209-26 209-27 209-28	1 5/8 1 11/16 1 3/4	3.3465	1.937	0.866	0.079	0.748	1.189	0.315	5/16-24	0.256	2.256	7390	3990	1.48
UC 210-30 210-31	1 7/8 1 15/16	3.5433	2.031	0.906	0.079	0.748	1.283	0.354	3/8-24	0.256	2.480	7940	4430	1.72
UC 211-32 211-34 211-35	2 2 1/8 2 3/16	3.9370	2.189	0.945	0.098	0.874	1.315	0.354	3/8-24	0.287	2.756	9700	5620	2.27
UC 212-36 212-38 212-39	2 1/4 2 3/8 2 7/16	4.3307	2.563	1.024	0.098	1.000	1.563	0.394	3/8-24	0.303	3.031	11800	6940	3.20
UC 213-40	2 1/2	4.7244	2.563	1.063	0.098	1.000	1.563	0.394	3/8-24	0.327	3.232	12900	7720	3.77
UC 214-44	2 3/4	4.9213	2.937	1.142	0.098	1.189	1.748	0.472	7/16-20	0.343	3.425	14000	8380	4.54
UC 215-48	3	5.1181	3.063	1.181	0.098	1.311	1.752	0.551	7/16-20	0.362	3.602	14900	9260	4.89
UC 216-50	3 1/8	5.5118	3.252	1.260	0.118	1.311	1.941	0.551	7/16-20	0.378	3.878	16300	10000	6.22
UC 217-52	3 1/4	5.9055	3.374	1.339	0.118	1.343	2.031	0.551	7/16-20	0.413	4.134	18700	12100	7.45
UC 218-56	3 1/2	6.2992	3.780	1.417	0.118	1.563	2.217	0.591	1/2-20	0.437	4.390	21500	13900	9.57

*

*

*

* * * * *


Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип 2-120

UCW 200

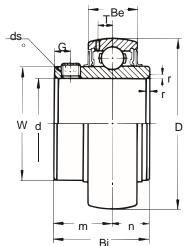
Длянормальныхусловийэксплуатации Креплениестопорнымивинтами

(Метрическаясерия)

												DI '		
					Pas	вмеры,	ММ					Номин. базова	ая нагрузка, кг	Вес, кг
Подшипник №														
	d	D	Bi	Be	r	n	m	G	ds	Т	W	Динамич. С	Статич. Со	
UCW 201	12	40	26	15	1	10	16	4	M 5 x 0.8	4	24.7	750	455	0.12
UCW 202	15	40	26	15	1	10	16	4	M 5 x 0.8	4	24.7	750	455	0.11
UCW 203	17	40	26	15	1	10	16	4	M 5 x 0.8	4	24.7	750	455	0.10
/B		`												

	вая		

Подшипник №					Pas	вмеры,	ММ					Номин. базов фун		Вес, фунты
	d	D	Bi	Be	r	n	m	G	ds(UNF)	Т	W	Динамич. С	Статич. Со	
UCW 201-8	1/2													0.26
UCW 202-9 202-10	9/16 5/8	1.5748	1.024	0.591	0.039	0.394	0.630	0.157	10-32	0.157	0.972	1650	1000	0.24
UCW 203-11	11/16													0.22


Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип 2-120

UC XOO

Дляумеренныхусловий эксплуатации Креплениестопорнымивинтами

(Метрическаясерия)

												71		
					Pa	змеры,	ММ						вая нагрузка, кг	Вес, кг
Подшипник №												'	N	
	d	D	Bi	Be	r	n	m	G	ds	Т	W	Динамич. С	Статич. Со	
UC X05	25	62	38.1	19	1.5	15.9	22.2	5	M 6 x 0.75	5.1	40.5	2000	1020	0.37
UC X06	30	72	42.9	20	1.5	17.5	25.4	6	M 3 x 1	5.8	48	2640	1400	0.46
UC X07	35	80	49.2	21	2	19	30.2	8	M 8 x 1	6.2	53	2990	1600	0.74
UC X08	40	85	49.2	22	2	19	30.2	8	M 8 x 1	6.5	57.3	3350	1810	0.80
UC X09	45	90	51.6	23	2	19	32.6	9	M10 x 1.25	6.5	63	3600	2010	0.92
UC X10	50	100	55.6	24	2	22.2	33.4	9	M10 x 1.25	7.3	70	4400	2550	1.21
UC X11	55	no	65.1	26	2.5	25.4	39.7	10	M10 x 1.25	7.7	77	5350	3150	1.72
UC X12	60	120	65.1	27	2.5	25.4	39.7	10	M10 x 1.25	8.3	82.1	5850	3500	1.97
UC X13	65	125	74.6	29	2.5	30.2	44.4	12	M12 x 1.5	8.7	87	6350	3800	2.33
UC X14	70	130	77.8	30	2.5	33.3	44.5	12	M12 x 1.5	9.2	91.5	6750	4200	2.57
UC X15	75	140	82.6	32	2.5	33.3	49.3	12	M12 x 1.5	9.6	98.5	7400	4550	3.22
UC X16	80	150	85.7	34	3	34.1	51.6	12	M12 x 1.5	10.5	105	8500	5500	3.81
UC X17	85	160	96	36	3	39.7	56.3	12	M12 x 1.5	11.1	111.5	9750	6300	4.83
UC X18	90	170	104	38	3	42.9	61.1	14	M14 x 1I.5	11.9	118	11100	7100	5.49
UCX20	100	190	117.5	42	3.5	49.2	68.3	16	M16 x 1.5	13	132.5	13700	9100	9.04

(Дюймоваясерия)

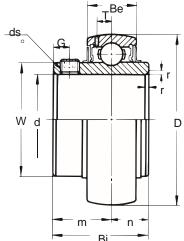
ТИП Подшипник №					Разм	іеры,	дюймы		<u>2-120</u>			Номин. базо фу	вая нагрузка, нты	Вес, фунты
-11	d	D	Bi	Be	r	n	m	G	ds(UNF)	Т	W	Динамич. С	Статич. Со	
UC X05-14 X05- 15 X05-16	7/8 15/16 1	2.4409	1.500	0.748	0.059	0.626	0.874	0.197	1/4-28	0.201	1.594	4410	2250	0.82
UC X06-18 X06- 19 X06-20	1 1/8 1 3/4 1 1/4	2.8346	1.689	0.787	0.059	0.689	1.000	0.236	5/16-24	0.228	1.890	5820	3090	1.01
UC X07-22 X07- 23	1 3/8 1 7/16	3.1496	1.937	0.827	0.079	0.748	1.189	0.315	5/16-24	0.244	2.087	6590	3530	1.63
UC X08-24	1 1/2	3.3465	1.937	0.866	0.079	0.748	1.189	0.315	5/16-24	0.256	2.256	7390	3990	1.76
UC X09-26 X09- 27 X09-28	1 5/8 1 11/16 1 3/4	3.5433	2.031	0.906	0.079	0.748	1.283	0.354	3/8-24	0.256	2.480	7940	4430	2.03
UC X10-30 X10- 31 X10-32	1 7/8 1 15/16 2	3.9370	2.189	0.945	0.079	0.874	1.315	0.354	3/8-24	0.287	2.746	9700	5620	2.67
UC X11-34 X11-35 X11 -36	2 1/8 2 3/16 2 1/4	4.3307	2.563	1.024	0.098	1.000	1.563	0.394	3/8-24	0.303	3.031	11800	6940	3.79
UC X12-38 X12- 39	2 3/8 2 7/16	4.7244	2.563	1.063	0.098	1.000	1.563	0.394	3/8-24	0.327	3.232	12900	7720	4.34
UC X13-40	2 1/2	4.9213	2.937	1.142	0.098	1.189	1.748	0.472	7/16-20	0.343	3.425	14000	8380	5.14
UC X14-43 X1 4-44	2 11/16 2 3/4	5.1181	3.063	1.181	0.098	1.311	1.752	0.472	7/16-20	0.362	3.602	14900	9260	5.66
UC X15-47 X15- 48	2 11/16 3	5.5118	3.252	1.260	0.098	1.311	1.941	0.472	7/16-20	0.378	3.878	16300	10000	7.10
UC X16-51	3 3/16	5.9055	3-374	1.339	0.118	1.343	2.031	0.472	7/16-20	0.413	4.134	18700	12100	8.40
UC X17-52 X17- 55	3 1/4 3 7/16	6.2992	3.780	1.417	0.1 18	1.563	2.217	0.472	1/2-20	0.437	4.390	21500	13900	10.65
UC X18-56	3 1/2	6.6929	4.094	1.496	0.118	1.689	2.406	0.551	9/16-18	0.469	4.646	24500	15700	12 10
UC X20-63 X20- 64	3 15/16 4	7.4803	4.626	1.654	0.138	1.937	2.689	0.630	5/8-18	0.512	5.217	30200	20100	19.92

*

*

*

*


• **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип 2-120

UC 300

Длятяжелыхусловийэксплуатации Креплениестопорнымивинтами

(Метрическаясерия)

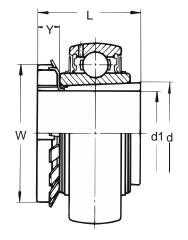
Подшипник №					Pa	змеры,	ММ					Номин. базо	вая нагрузка, кг	Вес, кг
ПОДШИТИТЕ	d	D	Bi	Ве	r	n	m	G	ds	Т	W	Динамич. С	Статич. Со	
UC 305	25	62	38	21	2	15	23	6	M 6 x 0.75	6.1	36.9	2170	1090	0.44
UC 306	30	72	43	23	2	17	26	6	M 6 x 0.75	6.7	45	2730	1420	0.56
UC 307	35	80	48	25	2.5	19	29	8	M 8 x 1	7.4	50.5	3400	1820	0.71
UC 308	40	90	52	27	2.5	19	33	10	M10 x 1,25	8.2	56	4150	2270	1.00
UC 309	45	100	57	30	2.5	22	35	10	M10 x 1.25	9	63	5250	3050	1.28
UC 310	50	110	61	32	3	22	39	12	M12 x 1.5	10	70.5	6300	3650	1.65
UC 311	55	120	66	34	3	25	41	12	M12 x 1.5	10.7	76.5	7300	4250	2.07
UC 312	60	130	71	36	3.5	26	45	12	M12 x 1.5	11.5	82.5	8300	4900	2.59
UC 313	65	140	75	38	3.5	30	45	12	M12 x 1.5	12.2	88.5	9450	5650	3.15
UC 314	70	150	78	40	3.5	33	45	12	M12 x 1.5	13	95.2	10600	6450	3.83
UC 315	75	160	82	42	3.5	32	50	14	M14 x 1.5	13.8	101.5	11600	7200	4 59
UC 316	80	170	86	44	3.5	34	52	14	M14 x 1.5	14.5	108	12500	8150	5.40
UC 317	85	180	96	46	4	40	56	16	M16 x 1.5	15	114.5	13500	9100	6.58
UC 318	90	190	96	48	4	40	56	16	M16 x 1.5	15.9	121	14600	10100	7.34
UC 319	95	200	103	50	4	41	62	16	M16 x 1.5	16.7	127.5	15600	11 100	8.70
UC 320	100	215	108	54	4	42	66	18	MI 8 x 1.5	18	135.5	17700	1 3300	10.80
UC 321	105	225	112	56	4	44	68	18	M18 x 1.5	19	142	18700	14500	12.20
UC 322	110	240	117	60	4	46	71	18	M18 x 1.5	21	152	20900	17000	14.30
UC 324	120	260	126	64	4	51	75	18	M18 x 1.5	22	165	21100	17000	18.50
UC 326	130	280	135	68	5	54	81	20	M20 x 1.5	23	178	23400	19600	23.00
UC 328	140	300	145	73	5	59	86	20	M20 x 1.5	25	191.5	26000	22400	28.50

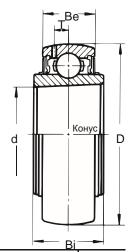
(Дюймоваясерия)

Подшипник №					Разм	еры,	дюймы						вая нагрузка, нты	Вес,
подшинин	d	D	Bi	Ве	r	n	m	G	ds(UNF)	Т	w	Динамич. С	Статич. Со	. •
UC 305-14 305- 16	7/8 1	2.4409	1. 496	0.827	0.079	0.591	0.906	0.236	1/4-28	0.240	1.453	4780	2400	0.97
UC 306-18	1 1/8	2.8346	1.693	0.906	0.079	0.669	1.024	0.236	1/4-28	0.264	1.772	6020	3130	1.23
UC 307-20 307- 22	1 1/4 1 3/8	3.1496	1.890	0.984	0.098	0.748	1.142	0.315	5/16-24	0.291	1.988	7500	4010	1.56
UC 308-24	1 1/2	3.5433	2.047	1.063	0.098	0.748	1.299	0.394	3/8-24	0.323	2.205	9150	5000	2.20
UC 309-26 309- 28	1 5/8 1 3/4	3.9370	2.244	1.181	0.098	0.866	1.378	0.394	3/8-24	0.354	2.480	11570	6720	2.82
UC 310-30	1 7/8	4.3307	2.402	1.260	0.118	0.866	1.535	0.472	7/16-20	0.394	2.776	13900	8050	3.64
UC 311-32 311- 34	2 2 1/8	4.7244	2.598	1.339	0.118	0.984	1.614	0.472	7/16-20	0.421	3.012	16100	9370	4.56
UC 312-36 312- 38	2 1/4 2 3/8	5.1181	2.795	1.417	0.138	1.024	1.772	0.472	1/2-20	0.453	3.248	18300	10800	5.71
UC 313-40	2 1/2	5.5118	2.953	1.496	0.138	1.181	1.772	0.472	1/2-20	0.480	3.484	20800	12500	6.94
UC 314-44	2 3/4	5.9055	3.071	1.575	0.138	1.299	1.772	0.472	1/2-20	0.512	3.748	23400	14200	8.44
UC 315-48	3	6.2992	3.228	1.654	0.138	1.260	1.969	0.551	9/16-18	0.543	3.996	25600	15900	10.12
UC 316-50	3 1/8	6.6929	3.386	1.732	0.138	1.339	2.047	0.551	9/16-18	0.571	4.252	27600	18000	11.90
UC 317-52	3 1/4	7.0866	3.780	1.811	0.157	1.575	2.205	0.630	5/8-18	0.591	4.508	29800	20100	14.50
UC 318-56	3 1/2	7.4803	3.780	1.890	0.157	1.575	2.205	0.630	5/8-18	0.626	4.764	32200	22300	16.18

Тип 2-120

UC 319 60	3 3/4	7.8740	4.055	1.969	0.157	1.614	2.441	0.630	5/8-18	0.657	5.020	34400	24500	19.17
UC 320-64	4	8.4646	4.252	2.126	0.157	1 654	2.598	0.709	3/4-16	0.709	5.335	39000	29300	23.80


[•] Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.



Тип

UK 200 + H

Длянормальныхусловийэксплуатации Креплениезакрепительнойвтулкой

(Метрическаясерия)

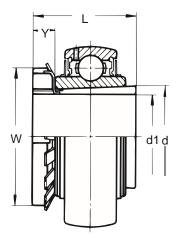
				Pas	меры,	MM				Номин. базо	вая нагрузка,	
Подшипник №										1	KΓ	Вес, кг
гюдшипник №	d ₁	D	I	d	Bi	Be	Т	Y	W	Динамич. С	Статич. Со	Dec, ki
UK 205 + H 2305	20	52	35	25	23	17	4.5	8	38	1430	710	0.24
UK 206 + H 2306	25	62	38	30	26	19	5.1	8	45	2000	1020	0.40
UK 207 + H 2307	30	72	43	35	27	20	5.8	9	52	2640	1400	0.53
UK 208 + H 2308	35	80	46	40	29	21	6.2	10	58	2990	1600	0.69
UK 209 + H 2309	40	85	50	45	30	22	6.5	11	65	3350	1810	0.77
UK 210 + H 2310	45	90	55	50	31	23	6.5	12	70	3600	2010	0.93
UK 211 + H 231 1	50	100	59	55	33	24	7.3	12	75	4400	2550	1.16
UK 212 + H2312	55	110	62	60	36	26	7.7	13	80	5350	3150	1.47
UK 213 + H 2313	60	120	65	65	38	27	8.3	14	85	5850	3500	1.82
UK 215 + H 2315	65	130	73	75	41	30	9.2	15	98	6750	4200	2.59
UK 216 + H2316	70	140	78	80	44	32	9.6	17	105	7400	4550	3.27
UK 217 + H2317	75	150	82	85	46	34	10.5	18	1 10	8500	5500	3.92
UK 218 + H2318	80	160	86	90	49	36	11.1	18	120	9750	6300	4.68

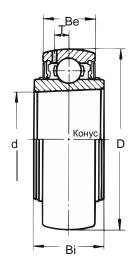
(Дюймоваясерия)

Подшипник №	Размеры, дюймы									Номин. базовая нагрузка, фунты		Bec,
	d ₁	D	L	d	Bi	Be	Т	Y	W	Динамич. С	Статич. Со	фунты
UK 205 + HE 2305 205 + HA 2305	3/4 11/16	2.0472	1.378	0.9843	0.906	0.669	0.177	0.315	1.496	3150	1560	0.53
UK 206 + HS 2306 206 + HA 2306 206 + HE 2306	7/8 15/16 1	2.4409	1.496	1.1811	1.024	0.748	0.201	0.315	1.772	4410	2250	0.88
UK 207 + HS 2307 207 + HA2307	1 1/8 1 3/16	2.8346	1.693	1.3780	1.063	0.787	0.228	0.354	2.047	5820	3090	1.17
UK 208 + HE 2308 208 + HA2308 208 + HS 2308	1 1/4 1 5/16 1 3/8	3.1496	1.81 1	1.5748	1.142	0.827	0.244	0.394	2.283	6590	3530	1.52
UK 209 + HA 2309 209 + HE 2309 209 + HS 2309	1 7/16 1 1/2 1 5/8	3.3465	1.969	1.7717	1.181	0.866	0.256	0.433	2.559	7390	3990	1.70
UK 210 + HA 2310 210 + HE 2310	1 11/16 1 3/4	3.5433	2.165	1.9685	1.220	0.906	0.256	0.472	2.756	7940	4430	2.05
UK 211 + HS 2311 211 + HA 2311 211 + HE 2311	1 7/8 1 15/16 2	3.9370	2.323	2.1654	1.299	0.945	0.287	0.472	2.953	9700	5620	2.56
UK 212 + HA 2312 212 + HS 2312	2 1/16 2 1/8	4.3307	2.441	2.3622	1.417	1.024	0.303	0.512	3.150	11800	6940	3.24

Тип

UK 213 + HA2313 213 + HE 2313 213 + HS 2313	2 3/16 2 1/4 2 3/8	4.7244	2.559	2.5591	1.496	1.063	0.327	0.551	3.346	12900	7720	4.01
UK 215 + HE 2315	2 1/2	5.1.181	2.874	2.9528	1.614	1.181	0.362	0.591	3.858	14900	9260	5.71
UK 216 + HE 2316	2 3/4	5.5118	3.071	3.1496	1.732	1.260	0.378	0.669	4.134	16300	10000	7.21
UK 217 + HE 2317	3	5.9055	3.228	3.3465	1.81 1	1.339	0.413	0.709	4.331	18700	12100	8.64
UK 218 + HS 2318	3 1/8	6.2992	3.386	3.5433	1.929	1.417	0.437	0.709	4.724	21500	13900	10.31


Подшипник №				Pasi	меры,	ММ					вая нагрузка, кг	Вес, к
гюдшинник №	d ₁	D	L	d	Bi	Be		Y	W	Динамич. С	Статич. Со	
UK X05 + H2305	20	62	35	25	26	19	5.1	8	38	2000	1020	0.37
UK X06 + H2306	25	72	38	30	27	20	5.8	8	45	2640	1400	0.54
UK X07 + H2307	30	80	43	35	29	21	6.2	9	52	2990	1600	0.70
UK X08 + H2308	35	85	46	40	30	22	6.5	10	58	3350	1810	0.81
UK X09 + H2309	40	90	50	45	31	23	6.5	11	65	3600	2010	0.94
UK X10 + H2310	45	100	55	50	33	24	7.3	12	70	4400	2550	1.22
UK X11 + H2311	50	1 10	59	55	36	26	7.7	12	75	5350	3150	1.54
UK X12 + H2312	55	120	62	60	38	27	8.3	13	80	5850	3500	1.89
UK X13 + H2313	60	125	65	65	40	29	8.7	14	85	6350	3800	2.09
UK X15 + H2315	65	140	73	75	44	32	9.6	15	98	7400	4550	3.25
UK X16 + H2316	70	150	78	80	46	34	10.5	17	105	8500	5500	3.86
UK X17 + H2317	75	160	82	85	49	36	11.1	18	110	9750	6300	4.72
UK X18 + H2318	80	170	86	90	52	38	11.9	18	120	11100	7100	5.11
I IK X20 + H2320	٩n	100	97	100	58	12	13	20	130	13700	9100	8 10



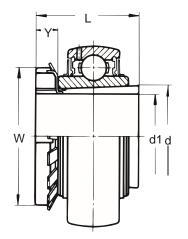
Тип

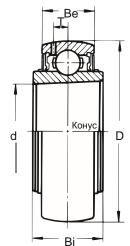
UK X00 + H

Дляумеренныхусловийэксплуатации Креплениезакрепительнойвтулкой

(Метрическаясерия)

(Дюймоваясерия)


Bearing No				Разме	ры, д	цюймы				Номин. базов фун		Вес, фунты
Dodining 110	d1	D	L	d	Bi	Be	Т	Y	W	Динамич. С	Статич. Со	+,=
UK X05 + HE 2305 X05 + HA2305	3 /4 13 /16	2.4409	1.378	0.9843	1.024	0.748	0.201	0.315	1.496	4410	2250	0.82
UK X06 + HS 2306 X06 + HA 2306 X06 + HE 2306	7 /8 15 /16 1	2.8346	1.496	1.1811	1.063	0.787	0.228	0.315	1.772	5820	3090	1.19
UK X07 + HS 2307 X07 + HA 2307	1 1/8 1 3/16	3.1496	1.693	1.3780	1.142	0.827	0.244	0.354	2.047	6590	3530	1.54
UK X08 + HE 2308 X08 + HA2308 X08 + HS 2308	1 1/4 1 5/16 1 3/8	3.3465	1.81 1	1.5748	1.181	0.866	0.256	0.394	2.283	7390	3990	
UK X09 + HA 2309 X09 + HE 2309 X09 + HS 2309	1 7/16 1 1/2 1 5/8	3.5433	1.969	1.7717	1.220	0.906	0.256	0.433	2.559	7940	4430	2.07
UK X10 + HA2310 X10 + HE 2310	1 11/16 1 3/4	3.9370	2.165	1.9685	1.299	0.945	0.287	0.472	2.756	9700	5620	2.60
UK X11 + HS 2311 X11 + HA2311 X11 + HE 2311	1 7/8 1 15/16 2	4.3307	2.323	2.1654	1.417	1.024	0.303	0.472	2.953	11800	6940	3.39
UK X12 + HA 2312 X12 + HS 2312	2 1/16 2 1/8	4.7244	2.441	2.3622	1.496	1.063	0.327	0.512	3.150	12900	7720	4.17
UK X13 + HA 2313 X13 + HE 2313 X13 + HS 2313	2 3/16 2 1/4 2 3/8	4 9213	2.559	2.5591	1.575	1.142	0.343	0.551	3.346	14000	8380	4 61
UK X15 + HE 2315	2 1/2	5.5118	2.874	2.9528	1.732	1.260	0.378	0.591	3.858	16300	10000	7.16
UK X16 + HE 2316	2 3/4	5.9055	3.071	3.1496	1.811	1.339	0.413	0.699	4 134	18700	12100	8.51
UK X17 + HE 2317	3	6.2992	3.228	3.3465	1.929	1.417	0.437	0.709	4.331	21500	13900	10.40
UK X18 + HS 2318	3 ¹ / ₈	6.6929	3.386	3.5433	2.047	1.496	0.469	0.709	4 724	24500	15700	11 26
UK X20 + HE 2320	3 1/2	7 4803	3 819	3.9370	2.283	1.654	0.512	0.787	∟ 5.118	30200	20100	17.85

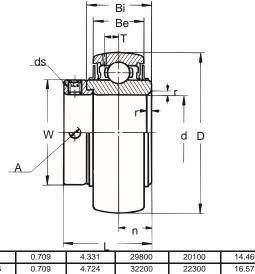


Тип

UK 300 + H

Длятяжелыхусловийэксплуатации Креплениезакрепительнойвтулкой

(Метрическаясерия)


				Pas	меры,	ММ				Номин. базова	ая нагрузка, кг	Вес, кг
Подшипник №	d ₁	D	L	d	Bi	Be	Т	Υ	W	Динамич. С	Статич. Со	
UK 305 + H 2305	20	62	35	25	26	21	6.1	8	38	2170	1090	0.48
UK 306 + H 2306	25	72	38	30	29	23	6.7	8	45	2730	1420	0.59
UK 307 + H 2307	30	80	43	35	31	25	7.4	9	52	3400	1820	0.74
UK 308 + H 2308	35	90	46	40	34	27	8.2	10	58	4150	2270	1.01
UK 309 + H 2309	40	100	50	45	37	30	9	11	65	5250	3050	1.31
UK 310 + H2310	45	1 10	55	50	40	32	10	12	70	6300	3650	1.68
UK 311 + H 2311	50	120	59	55	43	34	10.7	12	75	7300	4250	2.06
UK 312 + H 2312	55	130	62	60	46	36	11.5	13	80	8300	4900	2.53
UK 313 + H 2313	60	140	65	65	48	38	12.2	14	85	. 9450	5650	3.07
UK 315 + H2315	65	160	73	75	54	42	13. 8	15	98	11 600	7200	4.74
UK 316 + H 2316	70	170	78	80	57	44	14.5	17	105	12500	8150	5.62
UK 317 + H 2317	75	180	82	85	60	46	15	18	110	13500	9100	6.56
UK 318 + H 2318	80	190	86	90	63	48	15.9	18	120	14600	10100	7.52
UK 319 + H 2319	85	200	90	95	66	50	16.7	19	125	15600	11100	8.72
UK320 + H 2320	90	215	97	100	72	54	18	20	130	17700	13300	10.80
UK 322 + H 2322	100	240	105	110	80	60	21	21	145	20900	17000	14.40
UK 324 + H 2324	110	260	112	120	86	64	22	22	155	21100	17000	18.00
UK 326 + H 2326	115	280	121	130	92	68	23	23	165	23400	19600	23.30
UK 328 + H 2328	125	300	131	140	98	73	25	24	180	26000	22400	28.80

(Дюймоваясерия)

Подшипник №				Разме	еры, д	ц М М М				Номин. базов фун		Вес, фунты
	d ₁	D	L	d	Bi	Be	Т	Y	W	Динамич. С	Статич. Со	
UK 305 + HE 2305	3 /4	2.4409	1.378	0.9843	1.024	0.827	0.240	0.315	1. 496	4780	2400	1.06
UK 306 + HE 2306	1	2.8346	1.496	1.1811	1.142	0.906	0.264	0.315	1. 772	6020	3130	1.30
UK 307 + HS 2307	1 ¹ / ₈	3.1496	1.693	1.3780	1.220	0.984	0.291	0.354	2. 047	7500	4010	1.63
UK 308 + HE 2308 308 + HS 2308	1 1/4 1 3/8	3.5433	1.81 1	1.5748	1.339	1.063	0.323	0.394	2.283	9150	5000	2.23
UK 309 + HE 2309 309 + HS 2309	1 1/2 1 5/8	3.9370	1.969	1.7717	1.457	1.181	0.354	0.433	2.559	11570	6720	2.89
UK 310 + HE 2310	1 ³ / ₄	4.3307	2.165	1.9685	1.575	1.260	0.394	0.472	2.756	13900	8050	3.70
UK 311 + HS 231 1 311 + HE 231 1	1 7/8 2	4.7244	2.323	2.1654	1.693	1.339	0.421	0.472	2.953	16100	9370	4.54
UK 312 + HS2312	2 ¹ / ₈	5.1181	2. 441	2. 3622	1.811	1. 417	0. 453	0.512	3.150	18300	10800	5.58
UK 313 + HE 2313 313 + HS 2313	2 1/4 2 3/8	5.5118	2.559	2.5591	1.890	1.496	0.480	0.551	3.346	20800	12500	6.77
UK 315 + HE 2315	2 1/2	6.2992	2.874	2.9528	2.126	1.654	0.543	0.591	3.858	25600	15900	10 .45
UK 316 + HE 2316	2 ³ / ₄	6.6929	3.071	3.1496	2.244	1.732	0.571	0.669	4.134	27600	18000	12.39

Тип

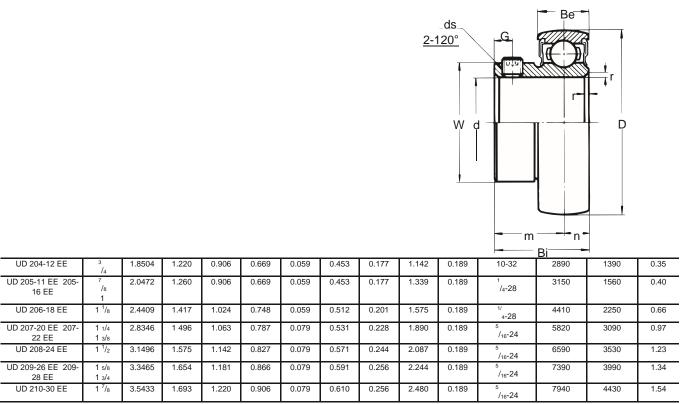
UK 317 + HE 2317	3	7.0866	3.228	3.3465	2.362	1.811	0.591	0.709	4.331	29800	20100	14.46
UK 318 + HS 2318	3 ¹ / ₈	7. 4803	3.386	3.5433	2.480	1.890	0.626	0.709	4.724	32200	22300	16.57
UK 319 + HE 2319	3 ¹ / ₄	7. 8740	3.543	3.7402	2.598	1.969	0.657	0.748	4.921	34400	24500	19.22
UK 320 + HE 2320	3 ¹ / ₂	8. 4646	3.819	3.9370	2.835	2.126	0.709	0.787	5.118	39000	29300	23.80
UK 322 + HE 2322	4	9.4488	4.134	4.3307	3.150	2.362	0.827	0.827	5.709	46100	37500	31.74

UD 200 + EE

Длянормальныхусловийэксплуатации

Креплениеэксцентриковымкольцом

(Метрическаясерия)


					Pa	змеры,	MM					Номин. базо		Вес, кг
Подшипник №												K	ı	
	d	D	L	Bi	Be	r	n	Т	W	Α	ds	Динамич. С	Статич. Со	
UD 204 +EE	20	47	31	23	17	1.5	11.5	4.5	29	4.8	M 5 x 0.8	1310	630	0.16
UD 205 +EE	25	52	32	23	17	1.5	11.5	4.5	34	4.8	M 6 x 0.75	1430	710	0.18
UD 206 +EE	30	62	36	26	19	1.5	13	5.1	40	4.8	M 6 x 0.75	2000	1020	0.30
UD 207 + EE	35	72	38	27	20	2	13.5	5.8	48	4.8	M 8 x 1	2640	1400	0.44
UD 208 +EE	40	80	40	29	21	2	14.5	6.2	53	4.8	M 8 x 1	2990	1600	0.56
UD 209 +EE	45	85	42	30	22	2	15	6.5	57	4.8	M 8 x 1	3350	1810	0.61
UD 210 +EE	50	90	43	31	23	2	15.5	6.5	63	4.8	M 8 x 1	3600	2010	0.70

* (Дюймоваясерия)

					Разм	еры,	дюймы					Номин. базо	вая нагрузка,	Bec,
Подшипник №												фу	НТЫ	фунты
	d	D	L	Bi	Ве	ŗ	n	Т	W	А	ds(UNF)	Динамич. С	Статич. Со	

Тип

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

В

Для легких условий эксплуатации Крепление стопорными винтами

(Метрическаясерия)

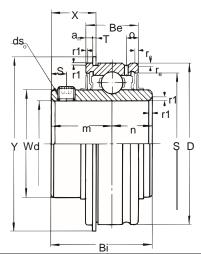
Тип

					Размеры,	ММ					Номин. базова	ая нагрузка, кг	Вес, кг
Подшипник №	d	D	Bi	Ве	r	n	m	G	ds	W	Динамич. С	Статич. Со	
B 1	12	40	22	12	1	6	16	4	M5 x 0.8	24.7	975	455	0.10
B 2	15	40	22	12	1	6	16	4	M5 x 0.8	24.7	975	455	0.09
B 3	17	40	22	12	1	6	16	4	M5 x 0.8	24.7	975	455	0.07
B 4	20	47	24.7	14	1.5	7	17.7	4.5	M5 x 0.8	29	1310	630	0.12
B 5	25	52	27	15	1.5	7.5	19.5	5	M6 x 0.75	34	1430	710	0.16
B 6	30	62	30.3	16	1.5	8	22.3	5	M6 x 0.75	40.5	2000	1020	0.25
B 7	35	72	32.9	17	2	8.5	24.4	6	M8 x 1	48	2640	1400	0.38

(Дюймоваясерия)

Подшипник №					Размеры,	дюймы	,				Номин. базо фу	вая нагрузка, нты	Вес, фунты
	d	D	Bi	Be	r	n	m	G	ds(UNF)	W	Динамич. С	Статич. Со	.,
B 1-8	1 / ₂												0.22
B 2-9 2-	9												0.20
10	/16 5 /8	1.5748	0.866	0.472	0.039	0.236	0.630	0.157	10-32	0.972	2150	1000	0.15
B 3-11	11 /16	1											
B 4-12	3 /4	1.8504	0.972	0.551	0.059	0.276	0.697	0.177	10-32	1.142	2890	1390	0.26
B 5-14 5-15 5-16	7 /8 15 /16 1	2.0472	1.063	0.591	0.059	0.295	0.767	0.197	1 /4-28	1.339	3150	1560	0.35
B 6-18 6- 19	11/8 1 3/16	2.4409	1.193	0.630	0.059	0.315	0.878	0.197	1 /4-28	1.594	4410	2250	0.55
B 7-20 7-21 7-22	11/4 15/16	2 0246	1,295	0 .669	0.070	0.225	0.004	0.226	5	4.000	5820	3090	0.04
7-23	13/8 17/16	2. 8346	1.295	0.009	0.079	0.335	0.961	0.236	/ ₁₆ -24	1.890	5820	3090	0.84

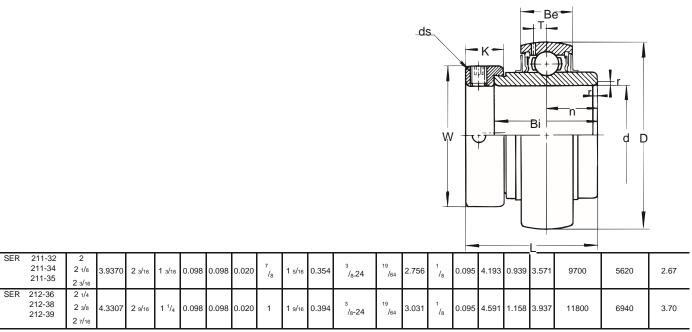
^{*}


^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

СПРУЖИНЯЩИМКОЛЬЦОМ

* Тип SER 200

Длянормальныхусловийэксплуатации Креплениестопорнымивинтами <u>2-120</u>


(Метрическаясерия)

Подшипник №								F	Размер	Ы,	ММ								Номин. нагру:	базовая зка, кг	Вес, кг
	d	D	BI	Be	ri	re	r ₁ (мин.)	n	m	G	ds	0	W	an	Т	Ү (макс)	Х	S	Динамич. С	Статич. Со	
SER 201	12	47	31	15.9	1	1.5	0.5	10.3	20.7	4.5	M 6 x 0 75	3.8	29	2.38	1.07	52.7	16.15	41	1310	630	0.27
SER 202	15	47	31	15.9	1	1.5	0.5	10.3	20.7	4.5	M 6 x 0.75	3.8	29	2.38	1.07	52.7	16.15	41	1310	630	0.25
SER 203	17	47	31	15.9	1	1.5	0.5	103	20.7	4.5	M 6 x 0.75	3.8	29	2.38	1.07	52.7	16.15	41	1310	630	0.23
SER 204	20	47	31	15.9	1.5	1.5	0.5	10.3	20.7	4.5	M 6 x 0.75	3.8	29	2.38	1.07	52.7	16.15	41	1310	630	0.22
SER 205	25	52	34.9	19	1.5	1.5	0.5	13.1	21.8	5	M 6 x 0.75	5.2	34	2.38	1.07	57.9	15.75	46	1430	710	0.28
SER 206	30	62	38.1	22.2	1.5	1.5	0.5	15.9	22.2	5	M 6 x 0.75	5.6	40.5	3.18	1.65	67.7	15.93	54.3	2000	1020	0.38
SER 207	35	72	42.9	23.8	2	2	0.5	17.5	25.4	6	M 8 x 1.0	5.6	48	3.18	1.65	78.6	18.32	63.5	2640	1400	056
SER 208	40	80	49.2	27.8	2	2	0.5	19	30.2	8	M 8 x 1.0	6.4	53	3.18	1.65	86.6	21.1	69.3	2990	1600	0.87
SER 209	45	85	49.2	27.8	2	2	0.5	19	30.2	8	M 8 x 1.0	6.4	57.3	3.18	1.65	91.6	21.1	74.3	3350	1810	0.95
SER 210	50	90	51.6	28.6	2	2	0.5	19	32.6	9	M10x 1.25	7.5	63	3.18	2.41	96.5	23.84	79.7	3600	2010	1.03
SER 211	55	100	55.6	30.2	2.5	2.5	0.5	22.2	33.4	9	M10 x 1.25S	7.5	70	3.18	2.41	106.5	23.84	90.7	4400	2550	1.21
SER 212	60	110	65.1	31.8	2.5	2.5	0.5	25.4	39.7	10	M10 x 1.25	7.5	77	3.18	2.41	116.6	29.4	100	5350	3150	1.68

(Дюймоваясерия)

									Разм	еры,	,	дюймы									базовая а, фунты	
Подшип	іник №																			nai pysiki	и, фунты	Bec,
		d	D	Bi	Be	ri	re	r. (мин.)	n	m	G	ds(UNF)	0	W	an	Т	Y (макс)	Х	S	Динамич. С	Статич. Со	фунты
SER 2	201-8	1 /2																				0.60
	202-9 202-10	9 /16 5 /8	1.8504	1 7/32	5 /8	0.039	0.059	0.020	13 /32	13 /16	0.177	1 /4-28	0.150	1.142	3 /32	0.042	2.075	0.636	1.614	2890	1390	0.55
SER 2	203-11	11/16																				0.51
SER 2	204-12	3 / ₄	1.8504	1 7/32	5 /8	0.059	0.059	0.020	13 /32	13 /16	0.177	1 / ₄ -28	0.150	1.142	3 /32	0.042	2.075	0.636	1.614	2890	1390	0.48
	205-14 205-15 205-16	7 /8 15 /16 1	2.0472	1 3/8	3 / ₄	0.059	0.059	0.020	33 /64	33 /64	0.197	1 / ₄ -28	13 /64	1.339	3 /32	0.042	2.280	0.620	1.811	3150	1560	0.62
:	206-17 206-18 206-19	1 1/16 1 1/8 1 3/16	3.4409	1 1/2	7 / ₈	0.059	0.059	0.020	5 /8	7 /8	0.197	1 / ₄ -28	7 /32	1.594	1 /8	0.065	2.665	0.628	2.138	4410	2250	0.84
:	207-20 207-21 207-22 207-23	1 1/4 1 5/16 1 3/8 1 7/16	2.8346	1 11/16	15 /16	0.079	0.079	0.020	11 /16	1	0.236	5 / ₁₆ -24	7 /32	1.890	1 /8	0.065	3.095	0.721	2.500	5820	3090	1.23
	208-24 208-25	1 1/2 1 9/16	3.1496	1 15/16	1 3/32	0.079	0.079	0.020	3 /4	1 3/16	0.315	5 / ₁₆ -24	1 /4	2.087	1 /8	0.065	3.410	0.831	2.728	6590	3530	1.92
:	209-26 209-27 209-28	1 5/8 1 11/16 1 3/4	3.3465	1 15/16	1 3/32	0.079	0.079	0.020	3 /4	1 3/16	0315	5 / ₁₆ -24	1 /4	2.256	1 /8	0.065	3.606	0.831	2.925	7390	3990	2.09
	210-30 210-31	1 7/8 1 15/16	3.5433	2 1/32	1 ¹ / ₈	0.079	0.079	0.020	3 /4	1 9/32	0.354	3 / ₈ -24	19 /64	2.480	1 /8	0.095	3.799	0.939	3.138	7940	4430	2.27

^{*} **Примечание:** нескладируемая позиция. По наличию просьба обращаться в нашу компанию.

Тип UG 200 + ER

Длянормальныхусловийэксплуатации Креплениеэксцентриковымкольцом

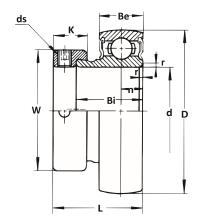
(Метрическаясерия)

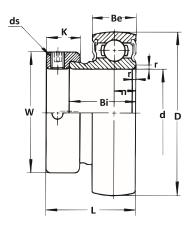
(MCTPM 1CCK	илоор	,,,,												
						Размеры,	ММ					Номин. базова	яя нагрузка, кгс	Вес, кг
Подшипник №														
	d	D	L	Bi	Be	r	n	Т	W	K	ds	Динамич. С	Статич. Со	
UGW 201 + ER	12	40	37.3	27.8	15	1	13.9	4	28.6	13.5	M 6 x 0.75	975	460	0.16
UGW 202 + ER	15	40	37.3	27.8	15	1	13.9	4	28.6	13.5	M 6 x 0.75	975	460	0.14
UGW 203 + ER	17	40	37.3	27.8	15	1	13.9	4	28.6	13.5	M 6 x 0.75	975	460	0.13
UG 204 + ER	20	47	43.7	34.2	17	1.5	17.1	4.5	33.3	13.5	M 6 x 0.75	1310	635	0.21
UG 205 + ER	25	52	44.4	34.9	17	1.5	17.5	4.5	38.1	13.5	M 6 x 0.75	1430	730	0.23
UG 206 + ER	30	62	48.4	36.5	19	1.5	18.3	5.1	44.5	15.9	M 8 x 1	2000	1050	0.37
UG 207 + ER	35	72	51.1	37.6	20	2	18.8	5.8	55.6	17.5	M10 x 1.25	2640	1430	0.6
UG 208 + ER	40	80	56.3	42.8	21	2	21.4	6.2	60.3	18.3	M10 x 1.25	2990	1650	0.76
UG 209 + ER	45	85	56.3	42.8	22	2	21.4	6.5	63.5	18.3	M10 x 1.25	3350	1890	0.79
UG 210 + ER	50	90	62.7	49.2	23	2	24.6	6.5	69.9	18.3	M10 x 1.25	3600	2110	0.91

(Дюймоваясе	(киа						-			-		-		
UG 212 + ER	60	110	77.8	61.9	26	2.5	31	7.7	84.2	22.3	M12 x 1.5	5350	3300	1.7
UG 211 + ER	55	100	71.4	55.5	24	2.5	27.8	7.3	76.2	20.7	M12 x 1.5	4400	2670	1.26

Подшипник №					Разме	ры, д	цюймы					Номин. базог фун		Вес, фунты
	d	D	L	Bi	Be	ŗ	n	Т	W	K	ds(UNF)	Динамич. С	Статич. Со	.,
UGW 201 + 8 ER	1/													0.35
UGW 202-9 + ER 202-10 + ER	9/16 5/8	1.5748	1 15/32	1 3/32	0.591	0.039	15 /64	0.157	1 1/8	17 /32	1 / ₄ -28	2150	1010	0.31
UGW 203-11 + ER	11/16													0.29
UG 204-12 + ER	3 /4	1.8504	1 23/32	1 11/32	0.669	0.059	43 /64	0.177	1 5/16	17 /32	1 /4-28	2890	1400	0.46
UG 205-14 + ER 205-15 + ER 205-16 + ER	7 /8 15 /16	2.0472	1 ³ / ₄	1 ³ / ₈	0.669	0.059	11 /16	0.177	1 1/2	17 /32	1 /4-28	3150	1610	0.51
UG 206-18 + ER 206-19 + ER 206-20 + ER	1 1/8 1 3/16 1 1/4	2.4409	1 29/32	1 7/16	0.748	0.059	21 /32	0.201	1 3/4	5 /8	5 / ₁₆ -24	4410	2310	0.82
UG 207-20 + ER 207-21 + ER 207-22 + ER 207-23 + ER	1 1/4 1 5/16 1 3/8 1 7/16	2.8346	2 1/64	1 31/64	0.787	0.079	0.742	0.228	2 3/16	11 /16	³ / ₈ -24	5820	3150	1.32
UG 208-24 + ER 208-25 + ER	1 1/2 1 9/16	3.1496	2 7/32	1 11/16	0.827	0.079	27 /32	0.244	2 3/8	/32	3 /8-24	6590	3640	1.68
UG 209-26 + ER 209-27 + ER 209-28 + ER	1 5/8 1 11/16 1 3/4	3.3465	2 7/32	1 11/16	0.866	0.079	27 /32	0.256	2 1/2	23 /32	3 /8-24	7390	4170	1.74
UG 210-30 + ER 210-31 + ER	1 7/8 1 15/16	3.5433	2 15/32	1 15/16	0.906	0.079	31 /32	0.256	2 3/4	/32	3 / ₈ -24	7940	4650	2.01
UG 211-32 +ER 211-34 + ER 211-35 + ER	2 2 1/8 2 3/16	3.9370	2 13/16	2 3/16	0.945	0.098	1 3/32	0.287	3	13 /16	7 / ₁₆ -20	9700	5880	2.78
UG 212-36 + ER 212-38 + ER 212-39 + ER	2 1/4 2 3/8 2 7/16	4.3307	3 1/16	2 7/16	1.024	0.098	1 7/32	0.303	3 5/16	7 /8	7 / ₁₆ -20	11800	7270	3.75

Примечание: Подшипникисерии UG 200 + ER заменилиподшипникисерии FG 200


Поналичиюстарыхподшипников FG 200 + ER просьбаобращатьсявнашукомпанию.


Тип KH 200 AE Тип KHR 200 AE

Для легких условий эксплуатации Крепление эксцентриковым кольцом

(Метрическаясерия)

ASAHI

Наружный сферический диаметр

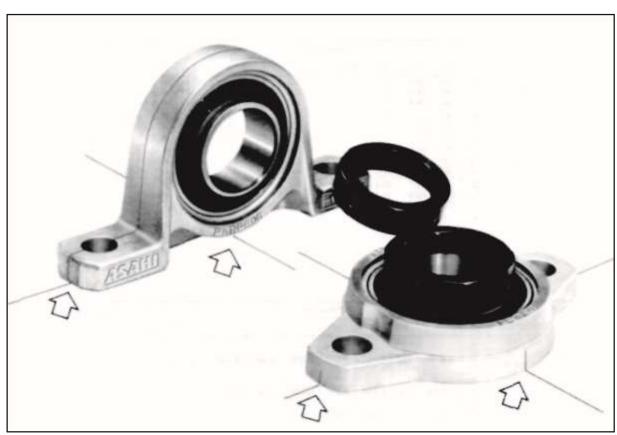
Наружный пиндрический диаметр

							сфері	ический	диаметр			ци	линдрический	диаметр	
Подш	ипник №						Размері	ы,	MM			•		вая нагрузка,	
													к	гс	
Наружный сферический диаметр	Наружный цилиндрический диаметр	d	D	L	Bi	Be	r	Т	n	w	К	ds	Динамич. С	Статич. Со	Вес, кг
KH 201 AE	KHR 201 AE	12	40	28.6	19.1	12	1	3.6	6.5	28.6	13.5	M 6 x 0.75	975	460	0.12
KH 202 AE	KHR 202 AE	15	40	28.6	19.1	12	1	3.6	6.5	28.6	13.5	M 6 x 0.75	975	460	0.11
KH 203 AE	KHR 203 AE	17	40	28.6	19.1	12	1	3.6	6.5	28.6	13.5	M 6 x 0.75	975	460	0.1
KH 204 AE	KHR 204 AE	20	47	31	21.5	14	1.5	4.1	7.5	33.3	13.5	M 6 x 075	1310	635	0.16
KH 205 AE	KHR 205 AE	25	52	31	21.5	15	1.5	4.1	7.5	38.1	13.5	M 6 x 0.75	1430	730	0.2
KH 206 AE	KHR 206 AE	30	62	35.7	23.8	16	1.5	4.9	9	44.5	15.9	M 8 x 1	2000	1050	0.31
KH 207 AE	KHR 207 AE	35	72	38.9	25.4	17	2	5.4	9.5	55.6	17.5	M10 x 1.25	2640	1430	0.49
KH 208 AE	KHR 208AE	40	80	43.7	30.2	18	2	5.9	11	60.3	18.3	M10 x 1.25	2990	1650	0.62
KH 209 BE	KHR 209 BE	45	85	43.7	30.2	19	2	6.2	11	63.5	18.3	M10 x 1.25	3350	1890	0.65
KH 210 BE	KHR 210 BE	50	90	43.7	30.2	20	2	6.5	11	69.9	18.3	M10x 1.25	3600	2110	0.75
KH 211 BE	KHR 211 BE	55	100	48.4	32.5	21	2.5	7	12	76.2	20.7	M12 x 1.5	4400	2670	0.94

(Люй	MORAG	сепия)

(11			
Подшипник №	Размеры, дюймы	Номин. базовая нагрузка,	Bec,
		фунты*с	фунты
			l

ШАРИКОПО дшипники



Наружный сферический диаметр	Наружный цилиндрический диаметр	d	D	L	Bi	Ве	r	Т	n	w	К	ds(UNF)	Динамич. С	Статич. Со	
KH 201 -8 AE	KHR 201-8 AE	1 /2													0.26
KH 202-9 AE 202-10 AE	KHR 202-9 AE 202-10 AE	9 /16 5 /8	1.5748	1 ¹ / ₈	0.752	0.472	0.039	0.142	0.256	1 1/8	17 /32	1 /4-28	2150	1010	0.24
KH 203-11 AE	KHR 203-11 AE	11 /16													0.22
KH 204-12 AE	KHR 204-12 AE	3 / ₄	1.8504	1 7/32	0.846	0.551	0.059	0.161	0.295	1 5/16	17 /32	1 / ₄ -28	2890	1400	0.35
KH 205-14 AE 205-15 AE 205-16 AE	KHR 205-14 AE 205-15 AE 205-16 AE	7 /8 15 /16	2.0472	1 7/32	0.846	0.591	0.059	0.161	0.295	1 1/2	17 /32	1 /4-28	3150	1610	0.44
KH 206-18 AE 206-19 AE 206-20 AE	KHR 206-18 AE 206-19 AE 206-20 AE	1 1/8 1 3/16 1 1/4	2.4409	1 13/32	0.938	0.630	0.059	0.193	0.354	1 3/4	5 /8	5 / ₁₆ -24	4410	2310	0.68
KH 207-20 AE 207-21 AE 207-22 AE 207-23 AE	KHR 207-20 AE 207-21 AE 207-22 AE 207-23 AE	1 1/4 1 5/16 1 3/8 1 7/16	2.8346	1 17/32	1.000	0.669	0.079	0.213	0.374	2 3/16	11 /16	³ / ₈ -24	5820	3150	1.08
KH 208-24 AE 208-25 AE	KHR 208-24 AE 208-25 AE	1 1/2 1 9/16	3.1496	1 23/32	1.188	0.709	0.079	0.232	0.433	2 3/8	/32	3 / ₈ -24	6590	3640	1.37
KH 209-26 BE 209-27 BE 209-28 BE	KHR 209-26 BE 209-27 BE 209-28 BE	1 5/8 1 11/16 1 3/4	3.3465	1 23/32	1.188	0.748	0.079	0.244	0.433	2 1/2	23 /32	³ /8-24	7390	4170	1.43
KH 210-30 BE 210-31 BE	KHR 210-30 BE 210-31 BE	1 7/8 1 15/16	3.5433	1 23/32	1.188	0.787	0.079	0.256	0.433	2 3/4	/32	3 /8-24	7940	4650	1.65
KH 211-32 BE 211-34 BE 211-35 BE	KHR 211-32 BE 211-34 BE 211-35 BE	2 2 1/8 2 3/16	3.9370	1 29/32	1.281	0.827	0.098	0.276	0.472	3	13 /16	7 / ₁₆ -20	9700	5880	2.07

ASAHI

ШАРИКОПОДШИПНИКОВЫЕУЗЛ Ы

Серия SILVER Серия STAINLESS SILVER

 БЫСТРОЕИТОЧНОЕПОЗИЦИОНИРОВАНИЕПО ОСЕВЫММЕТКАМ

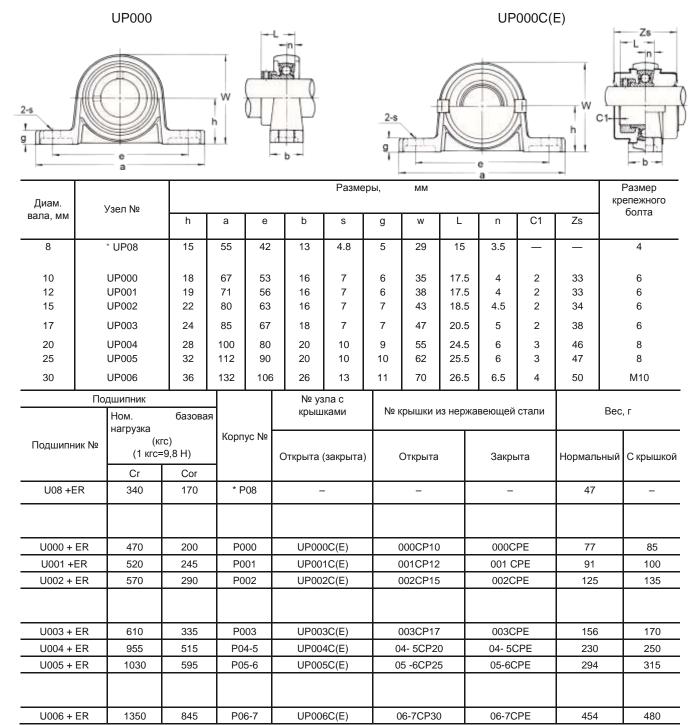
Осевые метки, нанесенные на корпусе, позволяют провести простое, быстрое и точное позиционирование узла и устранить необходимость проведения регулировки после монтажа. При размещении узла надо всего лишь нанести линии на опорной раме и совместить их с осевыми метками.

- КОМПАКТНЫЕРАЗМЕРЫИМАЛЫЙВЕС
 Эти характеристики обеспечивают высокую эффективность работы и экономию пространства для машины и оборудования.
- ПРОСТОЙ И БЫСТРЫЙ МОНТАЖ

Эксцентриковые запорные кольца обеспечивают быстрое и надежное крепление подшипника на валу.

- ВЫСОКАЯУПЛОТНЯЮЩАЯСПОСОБНОСТЬ Подшипниковые узлы отличаются эффективным уплотнением. Для дополнительной защиты от пыли и влаги в подшипниковых узлах предусмотрены торцевые крышки из нержавеющей стали.
- ВЫСОКАЯКОРРОЗИОННАЯСТОЙКОСТЬ (серия STAINLESS SILVER)
 Узлы могут эксплуатироваться в неблагоприятных окружающих условиях.
- ВЫСОКОСКОРОСТНАЯ РАБОТА

•Допуски


ASAHI

В соответствии с требованиями JIS B1558 к шарикоподшипникам для узлов и JIS B1559 к корпусам

Ceрия SILVER ____

Стационарные корпуса

Тип UP000 Тип UP000C(E)

Примечание: * По наличию UP08 просьба обращаться в нашу компанию.

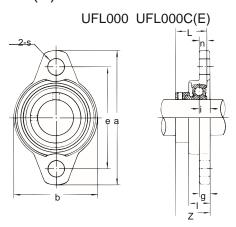
Cr: Номин. динамическая нагрузка, Cor: Номин. статическая нагрузка подшипниковых узлов.

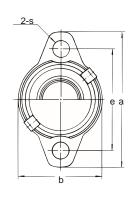
•Диапазон рабочих температур

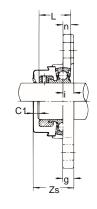
От -10°C до +80°C. По рабочим температурам за пределами этого диапазона просьба обращаться в нашу компанию.

• Выбор вала

			Ед. изм.:	MKN
Диам. в	ала, мм	:-7	h.7	
Свыше	Включит.	js7	n/	


			AS	AHI
6	10	± 7.5	0~–15	
10	18	± 9	0~-18	
18	30	± 10.5	0~–21	
30	50	± 12.5	0~-25	


Примечание: Использовать плотную посадку для выполнения задач на высокой скорости и при наличии вибрации.


Серия SILVER.

Узлы в двухболтовом фланце

Тип UFL000 Тип UFL000C(E)

498

520

							Pa	змеры	l, N	ИМ					Размер
Диам.	У	зел №												_	крепежного болта
вала, мм			а	е	i	g	I	S	b	Z	L	n	Ci	Zs	ooma
8	ι	JFL08	48	37	4.5	4	8.5	4.8	27	16	15	3.5	_	_	M 4
10	U	JFL000	60	45	5.5	5.5	11.5	7	36	19	17.5	4	2	22	M 6
12	U	IFL001	63	48	5.5	5.5	11.5	7	38	19	17.5	4	2	22	M 6
15	U	IFL002	67	53	6.5	6.5	13	7	42	20. 5	18.5	4.5	2	24	M 6
17	U	IFL003	71	56	7	7	14	7	46	22.5	20.5	5	2	26	M 6
20	_	IFL004	90	71	8	8	16	10	55	26.5	24.5	6	3	31	M 8
25	U	IFL005	95	75	8	8	16	10	60	27.5	25.5	6	3	32	M 8
30	U	IFL006	112	85	9	9	18	13	70	29	26.5	6.5	4	34	M10
35	U	IFL007	122	95	10	10	20	13	80	32.5	29.5	7	4	38	M10
	Под	дшипник					∘ узла с		Na					Des	(-)
		Ном.	базов	ая		кр	ышками	1	и₂ кры	шки из н	ержав	еющей с	тали	Bed	(Γ)
Подшипн	ик No	нагрузка (кг	c)	ŀ	Корпус №										
ПОДШИПП	VIII 14-	(1 кгс=	9,8 H)			Откры	та (закр	ыта)	Отк	рыта		Закрыт	a	Нормальн	ый С крышкой
		Cr	Cor												
U08 +	ER	340	170		FL08		-			-		-		30	_
U000 +	ER	470	200		FL000	UF	L000C(E	≣)	000	CP10		000CP	E	60	65
U001 +	ER	520	245		FL001	UF	L001C(E	≣)		CP12		001 CP	_	76	80
U002 +	ER	570	290		FL002	UF	L002C(E	Ξ)	002	CPi5		002CP	E	100	105
U003 +	ER	610	335		FL003	UF	L003C(E	≣)	003	CP17		003CP	E	129	135
U004 +		955	515		FL04-5		L004C(E			CP20		04- 5CF		205	215
U005 +	ER	1030	595		FL05-6	UF	L005C(E	Ξ)	05- 6	SCP25		05- 6CF	PE	244	255
U006 +	ER	1350	845		FL06-7	UF	1006C(E	Ξ)	06-7	'CP30		06-7CP	E	354	370

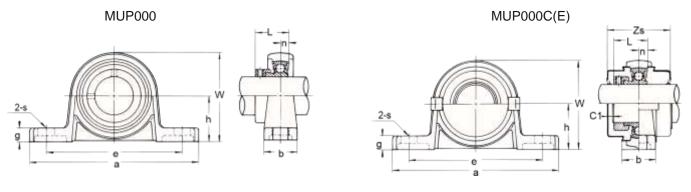
[•] Рекомендуемый момент затяжки стопорных винтов и допустимая осевая нагрузка

UFL007C(E)

FL07-8

07-8CP35

№№ применяемых подшипников	Стопорный винт №.	Шестигранный ключ	Момент затяжки (кгс*см)	Допустимая осевая нагрузка (кгс)
U08	M3X05	1.5	6	40
U000~U003, MU000~MU003	M4 X 0.7	2	15	90
U004~U006, MU004~MU006	M5 X 0 8	2.5	30	180
U007	M6 X 0.75	3	50	300


Примечание: При повышении рабочей радиальной нагрузки также повышается и осевая нагрузочная способность.

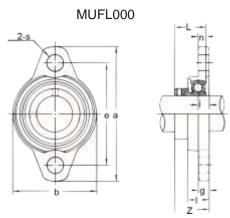
Cepuя STAINLESS SILVER _

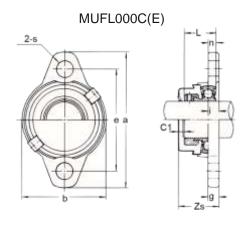
Стационарные корпуса

Тип МUР000

Тип MUP000C(E)

Диам.	,	/зел №					Разме	ры,	ММ					Размер крепежного
вала, мм	•	7 3 G 7 T 1 =	h	а	е	b	S	g	W	L	n	C ₁	Zs	болта
10	١	/UP000	18	67	53	16	7	6	35	17.5	4	2	33	M 6
12	N	/IUP001	19	71	56	16	7	6	38	17.5	4	2	33	M 6
15	N	/IUP002	22	80	63	16	7	7	43	18.5	4.5	2	34	M 6
17	N	/UP003	24	85	67	18	7	7	47	20.5	5	2	38	M 6
20	Ν	/UP004	28	100	80	20	10	9	55	24.5	6	3	46	M 8
25	N	/IUP005	32	112	90	20	10	10	62	25.5	6	3	47	M 8
30	N	/UP006	36	132	106	26	13	11	70	26.5	6.5	4	50	M10
	Поді	шипник №												
		Ном.	базовая			№ узла с і	крышкам	и № н	крышки и	из нержа	веющей	стали	Bec	(г)
_		нагрузка	\	Корпу	vc Nº			+					<u> </u>	1
Подшипн	ик №	(кг (1 кгс=	,	' '	,	Открыта	(закрыта)	Открыта		Закры	ыта	Нормальнь	й С крышкой
		Cr	Cor	1			(1	'						
MU000 +	ER	400	160	P00	0Z3	MUP00	00C(E)	(000CP10)	000C	PE	77	85
MU001 +	ER	440	195	P00	1Z3	MUP00	01C(E)	(001CP12	2	001 C	PE	91	100
MU002 +	ER	485	230	P00	2Z3	MUP00	02C(E)	(002CP15	5	002C	PE	125	135
MU003 +	ER	520	270	P00	3Z3	MUP00	03C(E)	(003CP17	,	003C	PE	156	170
MU004 +	ER	810	410	P04-	5Z3	MUP00	04C(E)	C)4-5CP2()	04-5C	PE	230	250
MU005 +	ER	875	475	P05-6Z3 MUP005C(E) 05-6CP25					5	05-6C	PE	294	315	
MU006 +	ER	1150	675	P06-	7Z3	MUP00	06C(E)	C	06-7CP30)	06-7 C	PE	454	480

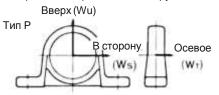

[•] Материалы


[•] Предельная частота вращения

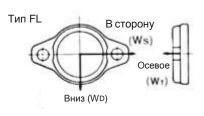
Серия	SILVER	STAINLESS SILVER]	
Узел №	UP000, UFL000 UP000C(E), UFL000C(E)	MUP000, MUF1000 MUP000C(E), MUFL000C(E)		26 2111
Подшипник	Высокоуглеродистая хромистая подшипниковая сталь (SUJ2)	Нержавеющая сталь (SUS440C)	Предельная частота вращения, об/мин	ж
Резиновое уплотнение	Бутадиен-нитрил	ьный каучук NBR		9000 9000 8000
Эксцентриковое запорное кольцо		ная сталь (SxxC) или катаная ная сталь (SS)		7000 4000
	Воронение	Гальванизация (MFCr)	Отверстияподшипника	С крышкой 4000
16	Литье из цинков	ого сплава (ZDC)	1	
Корпус	_	Гальванизация (MZCr)	1	3000
Крышка из нержавеющей стали	Нержавеющая	сталь (SUS430)		овскрышкой цифрыобозначаютдиаметрывала) TAINLESS SILVER

Узлы в двухболтовом фланце Тип MUFL000

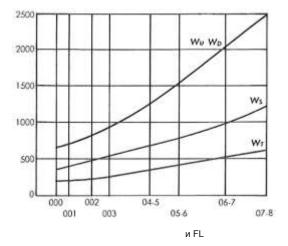
Тип MUFL000C(E)



Диам. вала,		зел №					Pa	змеры	, 1	ММ					Размер крепежного
мм		007114=	а	е	i	g	I	S	b	Z	L	n	Ci	Zs	болта
10	M	JFL000	60	45	5.5	5.5	11.5	7	36	19	17. 5	4	2	22	M 6
12	MU	JFL001	63	48	5.5	5.5	11.5	7	38	19	17.5	4	2	22	M 6
15	MU	JFL002	67	53	6.5	6.5	13	7	42	20.5	18.5	4.5	2	24	M 6
17	М	JFL003	71	56	7	7	14	7	46	22.5	20.5	5	2	26	M 6
20	М	JFL004	90	71	8	8	16	10	55	26.5	24.5	6	3	31	M 8
25	M	JFL005	95	75	8	8	16	10	60	27.5	25.5	6	3	32	M 8
30	М	JFL006	112	85	9	9	18	13	70	29	26.5	6.5	4	34	M10
	По	дшипник				No van	3 C VDFII	INSMIN	No vo	פאו אועוווו	uenwap	еюшей с	тапи	Вє	ес (г)
			вая нагру гс)	нагрузка		№ узла с крышками № крышки из не						сющейс	,0 (1)		
Подшипн	ник №	`	=9,8 H)		Корпус №		ыта (закр	оыта)	Оті	крыта		Закрыт	га	Нормаль	ный С крышкой
		Cr	Cor												
MU000 -	+ ER	400	160)	FL000Z3	MU	FL000C	(E)	000	CP10		000CP	E	60	65
MU001 -	+ ER	440	195	,	FL001Z3	MU	FL001C	(E)	001	CP12		001 CF	PΕ	76	80
MU002 -	+ ER	485	230		FL002Z3	MU	FL002C	(E)	002	2CP15		002CP	Έ	100	105
MU003 -	+ ER	520	270		FL003Z3	MU	FL003C	(E)	003	BCP17		003CP	Ε	129	135
MU004 -	+ ER	810	410		FL04-5Z3	MU	FL004C	(E)	04-5	5CP20		04-5CF	PΕ	205	215


875 475 FL05-6Z3 05-6CPE MU005 + ER MUFLOO5C(E) 05-6CP25 244 MU006 + ER 1150 675 FL06-7Z3 MUFL006CE) 06-7CP30 06-7CPE 354 370

•Прочностькорпусовнаразрыв


Направления прилагаемой нагрузки

Прочность наразрыв (кгс)

№№ корпусов для типов Р

Подшипниковыеузлы ASAHI

ТЕХНИЧЕСКИЕХАРАКТЕРИСТИКИ

ВАЖНАЯИНФОРМАЦИЯ

В настоящем издании представлены новые данные по основным номинальным динамическим нагрузкам.

Новые основные номинальные динамические нагрузки, чьи величины С увеличены на 30% по сравнению с величинами, указанными в наших предыдущих изданиях, рассчитаны, исходя из повышения уровня качества наших подшипников. Новые величины заменяют собой старые.

Расчеты номинальных динамических нагрузок и номинальных сроков службы подшипников проводятся в соответствии с требованиями стандарта ISO 281/1-1977 (соответствующего JIS 1518-1981), в котором представлена формула для откорректированного номинального срока службы:

Lna = a₁ a₂ a₃ L₁₀

где:

$$L_{10} = (\underline{C})_3$$

Lna: откорректированный номинальный срок службы в миллионах оборотов с учетом надежности (100 — n)%, где буква «n» обозначает разницу между требуемой надежностью, материалами подшипников и рабочими условиями.

а1 : коэффициент корректировки срока службы для надежности

а2 : коэффициент корректировки срока службы для материалов

аз : коэффициент корректировки срока службы для рабочих условий

Следует учитывать, что новые основные номинальные динамические нагрузки определены с учетом того факта, что стандартная подшипниковая сталь, применяемая для наших подшипников, обладает более высокими качествами по сравнению с материалами, на основе которых выведена формула для требований стандарта ISO. Соответственно, при использовании этих новых номинальных нагрузок, величина для коэффициента a_2 должна быть $a_2 = 1$. Другие величины, т.е. коэффициенты a_1 и a_3 , должны применяться в соответствии с инструкциями, содержащимися в указанном стандарте.

Данные по номинальной нагрузке на стр. 79 – 81 и другие соответствующие параметры и величины основаны на новых основных номинальных динамических нагрузках.

1. ДОПУСКИНАПОДШИПНИКОВЫЕУЗЛЫ

1.1 Допускинаподшипники

1) Внутренниекольца

Таблица 1.1 Допускинавнутренниекольцаподшипниковсцилиндрическим

0,001 мм

Ед. изм.:

отверстием

(0,0001 д.)

Ном	инальный ди		стия		е среднего отверстия	Непостоянство диаметра отверстия	Отклонен	ие ширины его кольца	Радиальное биение внутреннего кольца	Отклонение
Свь	іше	Включі	ительно	⊿c	lmp	V dp	⊿Bs (3	талон)	Кіа (эталон)	
ММ	дюймы	ММ	дюймы Вер		Нижнее	Макс.	Верхнее Нижнее		Макс.	⊿Hs
6	0.2362	10	0.3937	+ 12 (+5)	0	8 (3)	0	-120 (- 47)	15 (6)	
10	0.3937	18	0.7087	+ 15 (+ 6)	0	10 (4)	0	-120 (47)	15 (6)	
18	0.7087	31.75	1.2500	+ 18 (+7)	0	12 (5)	0	-120 (- 47)	18 (7)	+ 100 (±39)
31.75	1.2500	50.8	2.0000	21 (+ 8)	0	14 (6)	0	-120 (- 47)	20 (8)	
50.8	2.0000	80	3.1496	+24 (+9)	0	16 (6)	0	- 150 (-59) -	25 (10)	
80	3.1496	120	4.7244	+28 (+11)	0	19 (7)	0	200 (-79)	30 (12)	_
120	4.7244	180	7.0866	+ 33 (+13)	0	22 (9)	0	- 250 (98)	35 (14)	_

Теоретическое коническое

отверстие

Фактическое коническое отверстие с отклонением среднего диаметра отверстия в плоскости внутреннего кольца

2) Наружныекольца

	альный ди (выше	d	тверстия	Отклон средн диаме отверс в плоск внутрен кольца на	его тра стия сости ннего	⊿d1mp -	⊿ dmp	Изменение диаметра отверстия в плоскости внутреннего кольца (1) Vdp		
				dmp	ipaio <u>_</u>					
MM	дюймы	MM	дюймы	Верхнее		Макс.	Мин.	Макс.		
					е					
18	0.7087	30	1.1811	+ 33	0	+ 21	0	13		
				(+3)		(+8)		(5)		
30	1.1811	50	1.9685	+ 39	0	+25	0	16		
				(+15)		(+10)		(6)		
50	1.9685	80	3.1 496	+ 46	0	+ 30	0	19		
				(+18)		(+12)		(7)		
80	3.1496	120	4.7244	+ 54	0	35	0	22		
				(+21)		(+14)		(9)		
120	4.7244	180	7.0866	+ 63	0	40	0	40		
				(+25)		(+16)		(16)		

	ди	ный нару аметр D		.,	диаметра	Радиальное биение наружного кольца Кеа
Сві	ыше	Включі	ительно	⊿[Om	(эталон)
MM	дюймы	MM	дюймы	Верхнее	Нижнее	Макс.
18	0.7087	30	1.1811	0	-9	15
30	1.181 1	50	1.9685	0	(-4) -11 (- 4)	(6) 20 (8)
50	1.9685	80	3.1496	0	-13 (- 5)	25 (10)
80	3.1496	120	4.7244	0	-15 (- 6)	35 (14)
120	4.7244	150	5.9055	0	-18 (- 7)	40 (16)
150	5.9055	180	7.0866	0	-25 (-10)	45 (18)
180	7.0866	250	9.8425	0	-30 (-12)	50 (20)
250	9.8425	315	12.4016	0	-35 (-14)	60 (24)

Дd1mp — Дdmp 2

фd — Дd1 ф (d+ Дdmp) — ф (d1+ Дd1mp) — Ф (d1+ Дd1mp) — Ф (м) — Мом (

Таблица 1.3 Допускинанаружные _{Ед. 0,001 мм} кольца _{изм.:} (0,0001 д

Таблица 1.2 Допускинавнутренниекольца _{0,001 мм}

Примечание: Величины нижнего параметра ⊿ Dm не должны применяться для расстояния в пределах 1/4 ширины наружного кольца от поверхности наружного кольца.

Примечание: (1) Распространяется на все радиальные плоскости конического отверстия.

 Расстояние между радиальной плоскостью, проходящей через центр сферы наружного кольца, и торцевой поверхностью внутреннего кольца.

Таблица 1.4 Расстояние «п» между радиальнойплоскостью, проходящейчерез центрсферынаружногокольцаиторцевой поверхностьювнутреннегокольца

Hoi	минальный диа	метр отверс	тия d		n
Св	ыше	Включ	ительно	Откло	нения
50 80 120	дюймы	ММ	дюймы	мм (0,001 мм)	дюймы (0,0001 д.)
		50	1.9685	±200	± 79
80	1.9685 3.1496 4.7244	80 120	3.1496 4.7244	±250 ±300 ±350	± 98 ±118 ±138
		so III			

4) Размеры фасок

Таблица 1.5 Размерыфасок Ед. изм.: мм (д.)

<u> </u>		<u>гд. лони. ини (д.)</u>
Номинальные размеры фасок r		
	Макс.	Мин.
1 (.039)	1.5 (.059)	0.6 (.024)
1.5 (.059)	2 (.079)	1 (.039)
2 (.079)	2.5 (.098)	1.5 (.059)
2.5 (.098)	3 (.118)	2 (.079)
3 (.118)	3.5 (.138)	2.5 (.098)
3.5 (.138)	4 (.157)	2.5 (.098)
4 (.157)	4.5 (.177)	3 (.118)
5 (.197)	6 (.236)	4 (.157)

Примечание: Размеры фасок не определяют форму угла подшипника, при этом профиль должен находиться в пределах затемненного участка, показанного ниже.

1.2 Допускинакорпуса

1) Допуски на сферический внутренний диаметр корпусов

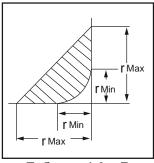
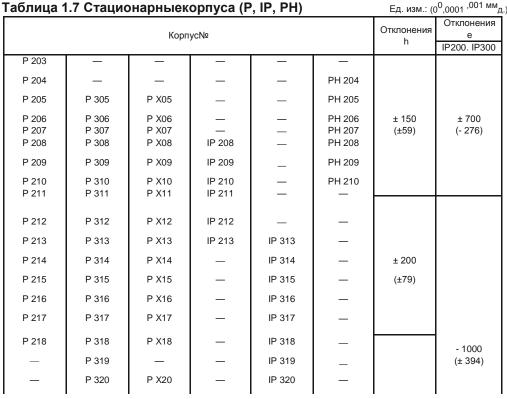
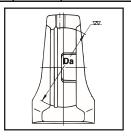


Таблица 1.6 Допускинасферическийвнутреннийдиаметр

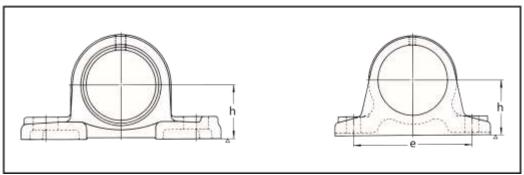
измЕд. .: (00,0001


,uu	ı	ммд.)


				Класс	диапазона	допусков Н7	Клас	с диапазона ,	допусков 17	Клас	допусков К7	
Номинал		р сфериче ипника Ја	еского гнезда	Отклонение диаметра от плоск внутренне сферическо	гверстия в ости го кольца	Изменение диаметра отверстия в плоскости внутреннего кольца сферического гнезда	диаметра с плоскости в кольца сф	е среднего отверстия в внутреннего ерического зда	Изменение диаметра отверстия в плоскости внутреннего кольца сферического гнезда	диаметра о плоскости в кольца сф	е среднего отверстия в внутреннего ерического зда	Изменение диаметра отверстия в плоскости внутреннего кольца сферического гнезда
С	Свыше Включительно		чительно	Dam		VDap	Dam		VDap	Dam		VDap
ММ	дюймы	MM	мм дюймы Верхн		Нижнее	Макс.	Верхнее Нижнее		Макс.	Верхнее Нижнее		Макс.
30	1.1811	50	1.9685	+25	0	10	+ 14	-11 (-	10	7	18 (10
				(+10)		(4)	(+ 6)	4)	(4)	(3)	7)	(4)
50	1.9685	80	3.1496	+30	0	12	18	-12 (-	12	9	21 (12
				(+12)		(5)	(+7)	5)	(5)	(4)	8)	(5)
80	3.1496	120	4.7244	+ 35	0	14	+ 22	-13 (-	14	10	25	14
				(+14)		(6)	(+ 9)	5)	(6)	(4)	(11)	(6)
120	4.7244	180	7.0866	+ 40	0	16	+ 26	-14	16	12	28	16
				(+16)		(6)	(+10)	(-6)	(6)	(5)	(11)	(6)
180	7.0866	250	9.8425	+ 46	0	18	+ 30	-16 (-	18	13	33	18
				(+18)		(7)	(+12)	6)	(7)	(5)	(13)	(7)
250	9.8425	315	12.4016	+ 52	0	20	+ 36	-16 (-	20	16	36	20
	I	I	I	(+20)		(8)	(+14)	6)	(8)	(6)	(14)	(8)

Примечание: (1) Размерные допуски на сферический внутренний диаметр корпусов классифицируются следующим образом: Н для посадки с зазором, К для посадки с натягом и Ј для промежуточной посадки между Н и К. Поскольку подшипники комплектуются центрирующим штифтом, обычно применяется посадка с зазором Н.

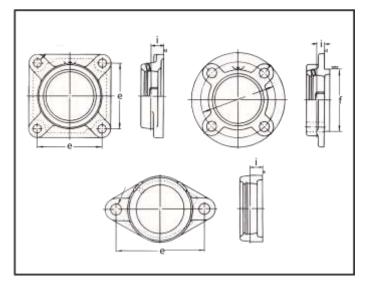
2) Допуски на стационарные корпуса (Р, ІР, РН)

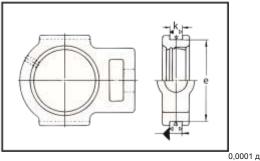


_	P 321	_	_	_	_	± 300 (±118)	
_	P 322	_		IP 322			
_	P 324	_	_	IP 324	_		
	P 326			IP 326			
_	F 320	_	_	IF 320	_		
_	P 328	_	_	IP 328	_		
							-1

Примечание: Этидопускитакжераспространяютсянаподшипниковыеузлыскрышками.

3) Допуски на корпуса фланцевого типа (F, FC, FS, FL, FK)


Габли	іца 1.	8 Koj	опусаф	рланце	вогот	ипа (F,	FC, F	S, FL, F	K)					Ед. изм.:	0,001,0	0001 ^{ММ} д		
										Радиаль ное биение			Откло	f энения				
										мех. обработа	FC	200	FS	300	FC	X00		
			Ko	рпус№				Отклонения е	Отклонения i	нной направля ющей, макс.	Верхнее	Нижнее	Верхнее	Нижнее	Верхнее	Нижнее		
F204 F205	— F305	— FX05	FC204 FC205	— FS305	FL 204 FL 205	— FL305	FK204 FK205					-46	0	- 46 (-18)	0	-46 (-18)		
F206 F207 F208	F306 F307 F308	FX06 FX07 FX08	FC206 FC207 FC208	FS306 FS307 FS308	FL 206 FL 207 FL 208	FL306 FL307 FL308	FK206 FK207 FK 208	. 700	.500	200	0	(-18)		-54				
F209 F210 F211	F309 F310 F3U	FX09 FX 10 FX1 1	FC209 FC210 FC211	FS309 FS310 FS311	FL 209 FL210 FL21 1	FL309 FL310 FL311	FK209 FK210 FK211	(±276) (±197)	200 (79)	0	-54	0	(-21)	0	-54 (-21)			
F212 F213 F21 4	F312 F313 F314	FX12 FX13 FX1 4	FC212 FC213 FC214	FS312 FS313 FS314	FL 21 2 FL 213 FL 21 4	FL312 FL313 FL314	_ _ _				U	(-21)		-63				
F215 F216 F217	F315 F316 F317	FX15 FX 16 FX17	FC215 FC216 FC217	FS315 FS316 FS317	FL 215 FL 216 FL217	FL315 FL316 FL317	_ _ _						0	(-25)	0	-63		
F218 — —	F318 F319 F320	FX 18 — FX20	FC218 — —	FS318 FS319 FS320	FL218 — —	FL318 FL319 FL320	_ _ _			300 (118)	0	-63 (-25)				(-25)		
_	F321 F322	_ _	_ _	FS321 FS322	_ _	FL321 FL322	_ _	±1000		±800						-72		
_ _ _	F324 F326 F328	_ _ _	_ _ _	FS324 FS326 FS328	_ 	FL324 FL326 FL328	_ _ _	(±394) (±315)		0	72 (-281]	(-28)		70			
	7020			. 5025		. 2020				400					0	-72 (-28)		
										(157)	_	_	0	-81 (-32)				


ASAHI

	i		•		in .				
								-89	
							0		
							·	(-35)	
								(33)	

Примечание: (1) Радиальное биение механически обработанной направляющей распространяется на узлы во фланцевых гильзах.

- (2) Эти допуски также распространяются на подшипниковые узлы с крышками.
- (3) Для типов FC X00 и FL X00 должны использоваться допуски, указанные для F X00.

Примечание: Эти допуски также распространяются на подшипниковые узлы с крышками.

Ед. изм.:

Ф

5) Допуски на раму из прессованной стали (WB)

Таблица 1.10 Рамаиз

0,001 мм

прессова	ннойст	гали	<u>гд.</u> иом	0,0001 д	
РамаN	<u>0</u>	Отклонения е	Отклон	ения f	
WB 205-2	213	± 700 (±276)	± 700 (±276)		
		e — e —	+		

4) Допуски на корпуса узлов натяжения (Т)

Таблица 1.9 Корпусаузловнатяжения (Т)

0,001 мм Ед. изм.:								
	Корпус№		Отклонения k	Отклонения е	Параллельно сть направляющей, макс.			
T204	-	-						
T205 T206 T207 T208 T209 T210	T305 T306 T307 T308 1309 T310	TX05 TX06 TX07 TX08 TX09 TX10 TX11	+200 0 (+79) (0)	0 -500 (0) (-197)	500 (197)			
T212	T312	TX12						
T213	T313	TX13						
T214 T215 T216 T217	T314 T315 T316 T317 T318	TX14 TX15 TX16 TX17	+ 300 0 (+118) (0)	0 -800 (0) (-315)	600 (236)			
_ _ _	T319 T320 T321 T322	_ _ _			700 (276)			
_ 	T324 T326 T328	_ _ _			800 (315)			

1.3 Другиедопускиначугунныекорпуса

6) Допуски на гильзовые корпуса

Таблица 1.11 Гильзовыекорпуса (С)

0,0001 д Отклонения а Радиальн ое биение C 200 C 300 C X00 наружн поверхн Отклонен Корпус№ Верхне Нижн Нижне Верхне Нижн Верхне ости, макс. (-12) C30 5 C20 5 ± 200 (±79) -35 -35 (-14)200

0,001 мм Ед.

Таблица 1.13 Допускиналитье

1) Допускинадлину Ед(. дюймыизм.: мм),

Номинальныйразмер	до 100 включ.	100 до 200 включ.	200 до 400 включ.	400 до 800 включ.
Размерныедопуски	± 1.5	± 2.0	± 3.0	± 4.0
	(±0.059)	(±0.079)	(±0.118)	(±0.157)

2) Допускинатолщину

2. НАГРУЗКИИСРОКСЛУЖБЫПОДШИПНИКОВЫХУЗЛОВ

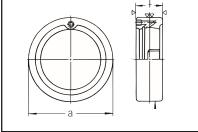


Таблица 1.12 Допускина

механообработку

Ед. изм.: мм,

(дюймы)

		(Діойній)		
	Номинальны	Размерныедопуски		
С	Сзыше Включительно		т азмерныедопуски	
MM	дюймы	ММ	дюймы	
4	0.1575	16	0.6299	±0.2 (±0.008)
16	0.6299	63	2.4803	±0.3 (±0.012)
63	2.4803	250	9.8425	±0.5 (±0.020)

Номинальныйразмер	до 5 включ.	5 до 10 включ.	10 до 20 включ.	20 до 30 включ.	30 до 40 включ.
Размерныедопуски	± 1.0	± 1.5	± 2.0	± 3.0	± 4.0
	(±0.039)	(± 0.059)	(± 0.079)	(± 0.118)	(± 0.157)

3) Допускинарасчетныйконус

Расчетныйконус	Внутренний	Наружный		
Отклонения	3 100	<u>5</u> 100		

Примечание: (1) Размерные допуски и отклонения указаны для обычных сортов.

(2) Размерные допуски на длину и толщину могут суммироваться с отклонениями на расчетный конус.

Поскольку нагрузочная способность и срок службы подшипниковых узлов аналогичны способности и сроку службы отдельно стоящего подшипника, эти параметры рассчитываются точно таким же образом, как и для одинарных шарикоподшипников.

2.1 Нагрузкиподшипника

1) Динамические коэффициенты

Обычно на подшипники действуют массы самих тел качения, силы, возникающие от работы ременного или зубчатого привода, и различные виды нагрузок, создаваемых в процессе работы машины. Помимо них, работа машины сопровождается слабыми или сильными ударами и вибрацией, поэтому практически достаточно трудно получить эти нагрузки с помощью расчетов.

Соответственно, нагрузки на отдельно стоящий подшипник следует определять путем умножения вычисляемых величин на коэффициенты, полученные опытным путем. Эти коэффициенты в совокупности называются динамическими коэффициентами и обычно классифицируются следующим образом: Коэффициент тяги ремня fb: ременной (или цепной) привод

Коэффициент зубчатой передачи fg: зубчатый привод

Коэффициент машины fd: все типы привода

(1) Ременной (или цепной) привод

Радиальная нагрузка, прилагаемая ременным или цепным приводом на вал шкива (или звездочки) рассчитывается по следующей формуле. н

КГС

$$M = 97400 \text{ n} \tag{2.1}$$

$$Kb = r \tag{2.2}$$

где:

M : момент на шкиве (или звездочке) кгс*см Н : приводная мощность кВт об/мин n : частота вращениявала Kb : эффективное натяжение ремня кгс

(или цепи)

: Эффективный радиус шкива r (или звездочки)

Эффективное натяжение - это разница между натяжением ведущей ветви и натяжением ведомой ветви. Радиальная нагрузка, воздействующая вал через на шкив. определяется путем умножения эффективного натяжения на коэффициент тяги ремня (или цепи), указанный в таблице 2.1, с учетом типа ремня и начального натяжения.

Fb = fb-Kb (2.3) где:

Fb : радиальная нагрузка на вал шкива (или звездочки) KEC

fb : Коэффициент тяги ремня (или цепи)

Таблица 2.1 Коэффициенттягиремня (или цепи): fb

Тип ремня	fb
Клиновидный ремень	2 ~ 2,5
Одинарный кожаный ремень с натяжным шкивом	2,5 ~ 3
Двухслойный кожаный ремень с натяжным шкивом	3 ~ 3,5
Шелковый ремень	3,5 ~ 4,5
Одинарный кожаный или резиновый ремень	4 ~ 5
Двухслойный кожаный или пеньковый ремень	5 ~ 6
Цепь	1,25 ~ 1,5

Примечание: Чемменьшерасстояниемеждуваламиичем нижечастотавращения, темболеевысокий коэффициентследуетприменять.

(2) Зубчатый привод

Рабочую нагрузку на зубчатое колесо зубчатого привода можно теоретически получить по мощности передачи и типу зубчатой передачи. На плоское зубчатое колесо оказывает воздействие только радиальная нагрузка, а на червячную, коническую и винтовую передачу, радиальной нагрузки, оказывает воздействие еще и осевая нагрузка. Кроме них, передачи в обязательном порядке подвержены воздействию ударных вибрационных нагрузок, которые зависят от степени механической обработки зубчатого колеса. Однако, учитывая то, что точно рассчитать эти нагрузки достаточно трудно, нагрузка на вал зубчатой передачи определяется путем умножения теоретических нагрузок на коэффициенты зубчатой передачи, указанные в таблице 2.2.

Fg=fg · Kg (2.4) где:

: радиальная нагрузка на вал зубчатой передачи

Kq : теоретическая нагрузка на вал

> зубчатой передачи KLC:

: коэффициент зубчатой передачи fq

Таблица 2.2 Коэффициент зубчатой передачи:

fa

•	
Тип передачи	fg
Прецизионная передача (допуск по шагу и форме находится в пределах 0,02 мм)	1,05 ~ 1,1
Обычная передача (допуск по шагу и форме находится в пределах 002 0,1 мм)	1,1 ~ 1,3

(3) Все типы привода

Поскольку работа всех машин и оборудования сопровождается слабыми или сильными ударами и вибрацией. фактические рабочие нагрузки на вал следует определять путем умножения этих нагрузок, рассчитанных по предыдущим пп. (1) и (2), на коэффициенты машины, указанные в таблице 2.3.

 $F = fd \cdot Fb = fd \cdot fb \cdot Kb$ (2.5) или F = fd • $Fg = fd \cdot fg \cdot Kg$ (2.6) где:

: фактическая нагрузка на вал шкива F (или вал со звездочкой, или вал зубчатой передачи) ΚГ

fd : Коэффициент машины

Таблица 2.3 Коэффициентмашины : fd P=XVFr + YFa (2.7) где:

Ρ : эквивалентная динамическая

> нагрузка ΚГ

Χ : коэффициент радиальной нагрузки

V : коэффициент числа оборотов

Υ : коэффициент осевой нагрузки

Fr : радиальная нагрузка ΚГ

Fa : осевая нагрузка ΚГ

Величины V, X и Y указаны в таблице 2.4.

Рабочее состояни	Рабочее состояние машины					
Вращающиеся машины, не подверженные воздействию ударных нагрузок	11 / 20	1	1.2	на		
Машины, подверженные воздействию легких ударных нагрузок, и машины с возвратнопоступательным движением	Редуктор скорости, двигатель внутреннего сгорания, компрессор	1.2	1.5			
Машины, подверженные воздействию сильных ударных нагрузок s	Молотковые дробилки, валковые дробилки	1.5	3.0			

Примечание: C_0 = Основная номинальная статическая нагрузка подшипника.

Нагрузки, полученные в процессе вышеуказанных расчетов, должны быть распределены среди опорных подшипников.

2) Эквивалентная динамическая нагрузка

Хотя радиальная нагрузка или осевая нагрузка и воздействует самостоятельно в ряде приложений, подшипники чаще

подвержены воздействию комбинированных нагрузок – радиальной и осевой, варьируемых по величине и направлению во время работы. Соответственно, эти нагрузки необходимо переводить в эквивалентную нагрузку при расчете срока службы подшипников.

Эквивалентная динамическая нагрузка равна такой нагрузке, которая обеспечивает срок службы без изменений по величине и направлению нагрузки, аналогичный сроку службы при

элогичный сроку служоы при фактической нагрузке и частоте

вращения. Дляотдельно стоящих подшипников

в подшипниковых узлах центральная радиальная нагрузка определяется при вращающемся

внутреннем кольце и неподвижном наружом кольце. Вообще, эквивалентную динамическую нагрузку

можно рассчитать по следующей формуле:

		Внутренне	е кольцо в	ольцо в					
<u>Fa</u>	<u>a</u>	нагруженном состоянии:				<u>Fa</u> > e VFr		е	
		вращающ	статич.						
		V	V	Х	Y	Х	Y		
0.0	14						2.30	0.19	
0.02	28						1.99	0.22	
0.0	56						1.71	0.26	

0.084						1.55	0.28
0.11 0.17	1	1.2	1	0	0.56	1.45 1.31	0.30 0.34
0.28						1.15	0.38
0.42						1.04	0.42
0.56						1.00	0.44

2.2 Срокслужбыиноминальныенагрузки

1) Срок службы и основные номинальные динамические нагрузки

В процессе эксплуатации подшипники напряжения постоянно испытывают наружном и внутреннем кольцах, а также на телах качения даже в своем обычном режиме работы, и с течением времени из-за усталости происходит отслаивание металла в желобах и на поверхностях тел качения.

Срок службы подшипника выражается в общем числе оборотов (или количестве часов при постоянной частоте вращения), которое нарабатывается подшипником до усталостного разрушения на обойме или теле качения подшипника.

Из-за различия сроков службы аналогичных подшипников, работающих в одних и тех же службы условиях, срок подшипника определяется как общее число оборотов (или количество часов при постоянной частоте вращения), нарабыватываемое 90 и более процентами группы аналогичных подшипников до усталостного разрушения, если отдельные подшипники эксплуатируются в одних и тех же условиях. Этот срок службы подшипника называется номинальным сроком службы и составляет примерно 1/5 среднего срока службы подшипника. Основная номинальная динамическая нагрузка - это такая нагрузка, которая не изменяется по величине направлению, и при которой номинальный срок службы подшипника составляет один миллион оборотов при вращающемся внутреннем кольце и неподвижном наружном кольце. Для отдельно стоящих подшипников подшипниковых узлах центральная радиальная принимается основная нагрузка как номинальная динамическая нагрузка.

2) Расчет номинального срока службы Зависимость между номинальным сроком службы, основной номинальной динамической нагрузкой и рабочей нагрузкой на подшипник определяется по следующей формуле:

$$L \quad \left(=\underline{C}\right)$$

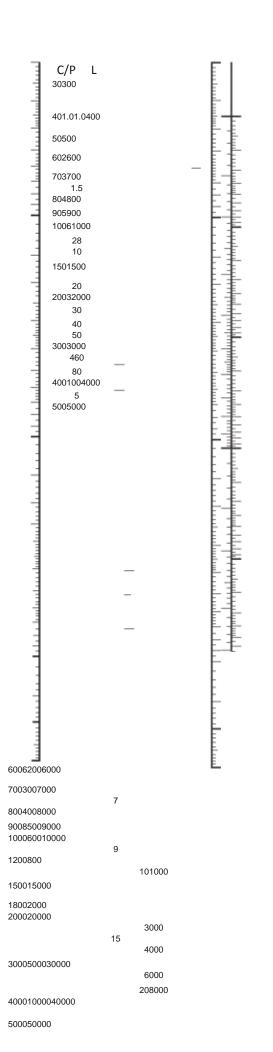
где:

L : номинальный срок службы об С : основная номинальная динамическая нагрузка ΚГ Ρ : эквивалентная динамическая нагрузка ΚГ Если удобно выражать номинальный срок службы в часах, а не в числе оборотов, применяется формула:

$$Lh = {}^{106}_{60} L = {}^{10}_{60} - {}^{6}_{10} P^{3}$$

$$(2.9)$$

где:


20200

Lh : срок службы подшипника, частота вращения вала об/мин

Рис. 2.1 HOMOΓPAMMA (n-C/P-Lh)

Частота Срок службы Коэффициент Срок службы в вращения в 10 часах, Lh нагрузки N, об/мин оборотов

Для расчета срока службы подшипника можно использовать номограмму, представленную на рис. 2.1 и отображающую зависимость между величиной С/Р и номинальным сроком службы. 3) Воздействие рабочих температур

Если подшипник непрерывно эксплуатируется при высоких температурах или если он подвергается воздействию очень высоких температур даже в течение короткого периода времени, происходит изменение во внутренней структуре материала подшипника, приводящее к снижению твердости и последующему сокращению основной номинальной динамической нагрузки подшипника. рабочая температура влияет эффективность работы подшипника, в случае, если она превышает 120°C (248°F), для расчета срока службы подшипниковых узлов, используемых в условиях высоких температур необходимо провести корректировку основной динамической номинальной нагрузки вычета соответствующей величины, указанной в 2.5, основной ИЗ номинальной динамической нагрузки С, указанной в таблицах размеров настоящего каталога.

Таблица 2.5 Влияниетемпературынаосновную номинальнуюнагрузку

Тем-ра подшипника, °С (°F)	125	150	175	200	225	250
	(257)	(302)	(347)	(392)	(437)	(482)
Снижение основной номинальной динамической нагрузки (%)	5	10	15	25	35	40

Номинальная базовая статическая нагрузка Если подшипник находится в неподвижном состоянии или слегка качается или вращается очень низкой частотой вращения, составляющей менее 10 об/мин, подшипник не испытывает повторяющиеся напряжения, и никакого отслаивания металла в желобах и на поверхностях тел качения не происходит. Соответственно, номинальная

ASAHI

нагрузка должна определяться по объему отрицательно воздействующей постоянной деформации желобов и тел качения.

Номинальная базовая статическая нагрузка определяется как статическая нагрузка, при которой сумма постоянной деформации тел качения и желобов на участке соприкосновения, испытывающем максимальное напряжение, составляет 0,0001 диаметра тела качения, и для отдельно стоящего подшипника, центральная радиальная нагрузка должна приниматься в качестве номинальной базовой статической нагрузки. Такая степень деформации не считается отрицательно воздействующей последующую работу на подшипниковых узлов.

Эквивалентная статическая нагрузка Эквивалентная статическая нагрузка определяется как статическая нагрузка с постоянными направлением И значением, вызывающая постоянные деформации соприкасающихся частей тел качения и колец подшипника, испытывающих максимальное напряжение на том же уровне, что максимальная постоянная деформация условиях фактической нагрузки. Для отдельно стоящего подшипника в подшипниковых узлах центральная радиальная нагрузка должна эквивалентной приниматься качестве статической нагрузки.

Эквивалентную статическую нагрузку можно рассчитать по следующей формуле:

$$Pn=XoFr + YoFa$$
 (2.10)

Po = Fr (2.11) где:

Ро : эквивалентная статич. нагрузка кгс

Хо : коэффициент статической

радиальной нагрузки

Yo : коэффициент статич. осевой нагрузки

Fr радиальная нагрузка КГС Fa осевая нагрузка кгс Для отдельно стоящего подшипника В подшипниковых узлах, следует взять большую из величин. полученных при вышеуказанных расчетах, а также взять коэффициент статической радиальной нагрузки Хо = 0,6 и коэффициент статической осевой нагрузки Yo = 0,5, cootbetctbehho.

6) Коэффициент запаса прочности для номинальной базовой статической нагрузки Хотя статическая номинальная базовая нагрузка принимается как номинальная нагрузка для подшипника, находящегося В неподвижном состоянии или слегка качающегося, допускается использовать меньшую статическую номинальную нагрузку, соответствующую выполняемой задаче. В этом случае статическая номинальная нагрузка должна определяться с помощью коэффициента запаса прочности, указанного в таблице 2.6.

$$P_0 \max = \frac{C_0}{f_0}$$
 (2.12)

где:

Ромах: максимальная эквивалентная

статическая нагрузка кгс

Со : номинальная базовая статическая

нагрузка, кгс

fs : Коэффициент запаса прочности

Таблица 2.6 Коэффициентзапасапрочности fs

Рабочие условия	fs
Постоянная работа без ударных нагрузок	Более 0.5 включ
Нормальная работа, сопровождаемая вибрацией	Более 1 включ.
Работа при ударных нагрузках или при необходимости проведения особо плавной работы	Более 2 включ.

0.001 MM

3. МОНТАЖПОДШИПНИКОВЫХУЗЛОВНАВАЛ

Подшипниковые узлы предварительно заполнены смазкой, что позволяет проводить монтаж и сразу же вводить их в эксплуатацию, а также проводить быстрое сервисное обслуживание. Однако, как и в случае с одинарными подшипниками, в случае ненадлежащего обслуживания они могут выйти из строя на начальном этапе эксплуатации.

Соответственно, необходимо проводить надлежащее обслуживание подшипниковых узлов, а в процессе монтажа на вал следует предусмотреть меры, исключающие воздействие ударных нагрузок и обеспечить защиту от попадания посторонних частиц в отдельно стоящий подшипник.

3.1 Выборвала

Вал, на котором устанавливаются подшипниковые узлы, не должен иметь изгибов и искривлений. Для узлов с цилиндрическим отверстием (со стопорными винтами или эксцентриковым запорным кольцом) обычно применяется посадка с зазором при их

монтаже на вал. Для данной свободной посадки рекомендуется использовать допуски указанные в таблице 3.1. При этом для высокой частоты вращения или высокоточной работы, или же в тех случаях, когда данная работа сопровождается сильными ударными нагрузками, должна применяться посадка с натягом. В рекомендуемые таблице 3.2 представлены допуски вала на посадку с натягом. Если подшипниковые **УЗЛЫ** эксцентриковым запорным кольцом устанавливаются на вал методом посадки с натягом, эксцентриковое запорное кольцо можно не использовать.

Подшипники с коническим отверстием имеют более широкие допуски вала, так как они крепятся к валу с помощью закрепительных втулок. Рекомендуемые допуски вала на подшипники с коническим отверстием представлены в таблице 3.3.

Таблица 3.1 Допускиваланапосадкусзазоромдляподшипниковсцилиндрическим

 отверстием
 Ед. изм.:

 Диаметрвала
 0,0001 д

	Диамет	рвала		Допусквала									
Св	ше	Включ	ительно	1									
ММ	дюймы	ММ	дюймы	i7	,	r	17		า8				
10	0.3937	18	0.7087	+12 (+5)	-6 (-2)	0	-18 (-7)	0	-27 (-11)				
18	0.7087	30	1.1811	+13 (+ 5)	-8 (-3)	0	-21 (-8)	0	-33 (-13)				
30	1.1811	50	1.9685	+ 15 (+6)	-10 (-4)	0	-25 (-10)	0	-39 (-15)				
50	1.9685	80	3.1496	+ 18 (+ 7)	-12 (-5)	0	-30 (-12)	0	-46 (-18)				
80	3.1496	120	4.7244	+ 20 (+ 8)	-15 (-6)	0	-35 (-14)	0	-54 (-21)				
120	4.7244	140	5.5118	+ 22 (+9)	-18 (-7)	0	-40 (-16)	0	-63 (-25)				

Примечание: Восновном, использовать ј7.

Таблица 3.2 Допускиваланапосадкуснатягомдляподшипниковсцилиндрическим

Ед. изм.:

0,001 мм

отверстием 0,0001 д

	Диаме	трвала			_									
Свь	ыше	Включ	ительно		Допусквала									
ММ	дюймы	ММ	дюймы	n	6	n7		m6		m7				
10	0.3937	18	0.7087	+ 23 (+9)	+ 12 (+5)	+ 30(+ 12)	+ 12 (+5)	+ 18 (+ 7)	+ 7 (+ 3)	+ 25 (+10)	+7 (+3)			

ASAHI

18	0.7087	30	1.1811	+ 28 (+11)	+15 (+6)	+ 36 (+ 14)	+ 15 (+ 6)	+ 21 (+8)	+8 (+ 3)	+ 29 (+11)	+ 8 (+ 3)
30	1.1811	50	1.9685	+ 33 (+ 13)	+ 17 (+7)	+ 42 (+17)	+ 17 (+7)	+ 25 (+10)	+ 9 (+ 4)	+ 34 (+ 13)	+ 9 (+ 4)
50	1.9685	80	3.1496	+ 39 (+15)	+ 20 (+8)	+50 (+ 20)	+20 (+8)	+ 30 (+12)	+ 11 (+4)	+ 41 (+ 16)	+ 11 (+ 4)
80	3.1496	120	4.7244	+ 45 (+ 18)	+ 23 (+9)	+ 58 (+ 23)	+ 23 (+ 9)	+ 35 (+14)	+ 13 (+ 5)	+ 48 (+19)	+ 13 (+ 5)
120	4.7244	140	5.51 18	+ 52 (+21)	+ 27 (+11)	+ 67(+ 26)	+ 27 (+11)	+40 (+16)	+ 15 (+ 6)	+ 55 (+22)	+ 15 (+16)

Примечание: Длядиаметровваламеньше 30 ммследуетиспользовать m 6.

Таблица 3.3 Допускиваланаподшипникисконическимотверстием

Ед. изм.: ⁰0^{,001}

,0001 ^{ММ}д

	Диамет	р вала										
Свь	ыше	Включи	тельно	Допуск вала								
ММ	дюймы	ММ	дюймы	h	9	h 10						
18	0.7087	30	1.1811	0	-52 (-21)	0	-84 (- 33)					
30	1.1811	50	1.9685	0	-62 (- 24)	0	-100 (- 39)					
50	1.9685	80	3.1496	0	-74 (- 29)	0	-120 (- 47)					
80	3.1496	120	4.7244	0	-87 (- 34)	0	-140 (- 55)					
120	4.7244	140	5.5118	0	-100 (- 39)	0	-160 (- 63)					

3.2 Монтажнавал

1) Подшипниковые узлы со стопорными винтами Для работы нормальных условиях подшипниковые узлы просто устанавливаются на вал и фиксируются двумя стопорными винтами с шестигранной головкой, затягиваемыми ключом. При этом перед затяжкой стопорных винтов для обеспечения надежного крепления рекомендуется подпилить напильником (рис. 3.1) или немного высверлить (рис. 3.2) вал на участке, с которым соприкасаются стопорные винты. Для работы в условиях, когда подшипниковые узлы подвержены воздействию вибронагрузок или ударных нагрузок или когда присутствуют сильные осевые нагрузки, следует использовать вал с заплечиком и зафиксировать узлы, затянув гайку, как показано на рис. 3.3. Кроме того, для эксплуатации в указанных выше условиях стопорные винты должны быть затянуты достаточно сильно.

Слишком сильная затяжка стопорных винтов может отрицательно сказаться на плавной работе

подшипника или привести к образованию трещин на внутреннем кольце. И наоборот, недостаточно затянутые стопорные винты могут ослабнуть во время работы проскальзывание внутреннего кольца на валу. Соответственно, стопорные винты должны быть затянуты с правильным моментом затяжки, рекомендуемым в таблицах 3.4 и 3.5. Поскольку подшипниковые узлы С прошедшим специальную термообработку внутренним растрескивания кольцом зашишены ОТ внутреннего кольца и ослабления стопорных является достаточно винтов, обычных распространенным явлением для закалкой, CO СКВОЗНОЙ ИΧ можно устанавливать на валах даже для работы в таких условиях, когда ОНИ будут подвержены воздействию периодических сильных вибрационных и ударных нагрузок.

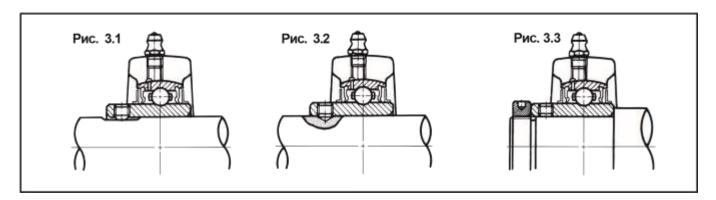


Таблица 3.4 Рекомендуемыймоментзатяжкистопорныхвинтов дляузлов, прошедшихспециальнуютермообработку

Размер стоп	орного винта	Подшипник	No	Момент	затяжки
Метрическая резьба	Резьба UNF	ПОДШИПНИК	IN≌	кг*см	нт затяжки дюйм*фунт Свыше 26 43 104 208
M 5 X 0.8	10-32	_	B4	Свыше 30	Свыше 26
M 6 X 0.75	1 / ₄ -28	UC204~UC206	85. B6	50	43
M 8 X 1	5 / ₁₆ -24	UC207~UC209	В7	120	104
M10 X 1.25	3 /8-24	UC210~UC213	_	240	208

Таблица 3.5 Рекомендуемыймоментзатяжкистопорныхвинтовдляузловсосквознойзакалкой

Размер стопор	оного винта					Момент	затяжки
Метрическая резьба	Резьба UNF	1	Подши		кг*см	дюйм*фунт	
M 5 X 0.8	10 - 32	UCW 201~ 203			B1-3	25	22
M 6 X 0.75	-28 1/4						
M 8 X 1	-24	UC 201~ 203	UC 305~3()6	UC X05		40	35
	/16		UC 307	UC X06~ X08		85	74
M 10 X 1.25	-24 3/8		UC 308~3()9	UC X09~ XI2		165	143
M 12 X 1.5	-20		00 300-309	00 X091 X12		103	143
M14 X 1.5	/ ₂ -18	UC 214 218	UC 310~314	UC XI3~ X17		285	247
M16 X 1.5	9 / ₁₆ - 1 8		UC 315~316	UC XI8		285	247
	5 / ₈		UC 317~319	UC X 20		680	590
M18 X 1.5	-16 3/ ₄		UC 320~3 <u>2</u> 4			680	590
M 20 X 1.5	-14 7/8		UC 326~3			000	330
			28			1150	998

Подшипниковые узлы со стопорными винтами

3) Подшипниковые

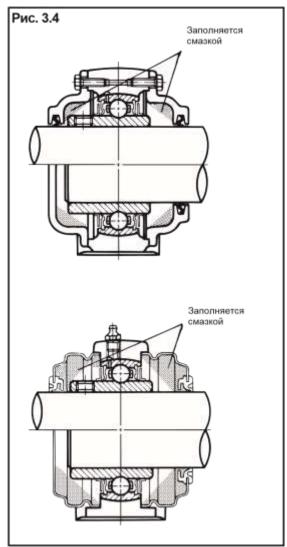
узлы с эксцентриковым

устанавливаются на вал следующим образом:

- (1) Убедиться в том, что стопорные винты не выходят за пределы внутреннего диаметра подшипника. (Если они выходят, ослабить стопорные винты).
- (2) Аккуратно поставить подшипниковые узлы на вал в требуемом месте. Монтаж следует проводить осторожно, чтобы исключить вероятность деформации вала. Запрещается бить молотком по
- внутреннему кольцу и маслоотражателю подшипника.
- (3) Равномерно затянуть стопорные винты с рекомендуемым моментом затяжки, указанным в таблице 3.4, и закрепить узлы на валу.
- (4) Установить корпус на раму машины. Рама машины должна быть достаточно прочной и

плоской, чтобы исключить вероятность деформации корпуса.

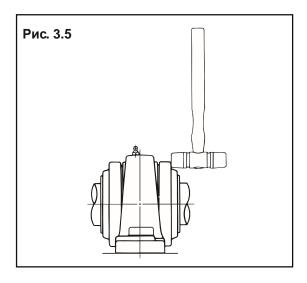
- 2) Подшипниковые узлы с закрепительной втулкой Подшипниковые узлы с закрепительной втулкой имеют более широкие допуски вала и могут использоваться для работы в условиях сильных ударов и вибрации. Монтаж этих узлов осуществляется следующим образом:
- (1) Поставить закрепительную втулку в необходимом месте на валу.
- (2) Поставить узел на вал и совместить коническое отверстие подшипника с соответствующей конусной частью втулки.
- (3) Поставить шайбу и гайку на втулку и затянуть гайку от руки.
- (4) Затянуть гайку ключом для закрепления узла на валу.Не следует затягивать гайку слишком сильно,
 - поскольку это может привести к перегреву во время работы.
- (5) Загнуть язычок шайбы в выемку втулки, чтобы исключить ослабление гайки.
- (6) Установить корпус на раму машины тем же способом, что и для узлов со стопорными винтами. запорным кольцом

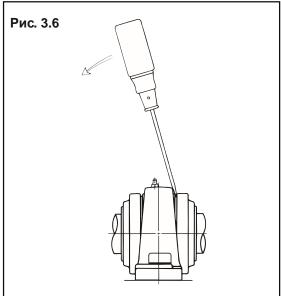

Подшипниковые узлы с эксцентриковым запорным кольцом устанавливаются на вал путем зацепления эксцентрикового запорного кольца с углубление эксцентриковым кулачком во внутреннем кольце подшипника, как показано на рис. 3.5. Для крепления кольца повернуть его в направлении вращения вала, кольцо закрепится автоматически под воздействием усилий, соответствующих радиальным нагрузкам. После этого зафиксировать стопорные на валу, затянув Рекомендуемый момент затяжки стопорных винтов см. в таблице

3.6. Если кольцо будет повернуто в направлении, противоположном направлению вращения вала, после начала работы внутреннее кольцо ослабнет, а затем закрепится автоматически при вращении вала. Соответственно. вал может зайти в отверстие подшипника, если узлы будут подвержены воздействию осевых нагрузок. Для работы в условиях, когда вал попеременно вращается по часовой и против часовой стрелки, крепления внутреннего кольца подшипника следует использовать вал с заплечиком или кольцо фиксации по оси. Если внутреннее кольцо сажается на вал с натягом, эксцентриковое запорное кольцо можно не использовать. Однако если узлы подвержены воздействию осевых нагрузок, внутреннее кольцо необходимо закрепить в направлении вращения вала, а для работы при слишком сильных осевых нагрузках необходимо использовать вал с заплечиком.

Таблица 3.6 Моментзатяжкистопорныхвинтов

Размер сто	пор. винта		Момент затяжки			
Метрическ. резьба	Резьба UNF	Подшипник №	кг*см	дюйм*фунт		
M5X0.8 M6X0.75	10-32 1 /4-28	UD 204 + EE UD 205 + EE ~206 + EE	30 50	26 43		
M8X1	/ ₁₆ -24	UD 207 + EE ~210 + EE	120	104		


- 4) Подшипниковые узлы с крышками Монтаж подшипниковых узлов с чугунными и стальными крышками осуществляется следующим образом:
- (1) Если крышки из чугуна или прессованной стали комплектуются резиновыми уплотнениями, заполнить камеру между крышками смазкой примерно на 1/3 1/2 полного объема. Смазка должна быть достаточно густой типа солидола. Смазка обеспечивает защиту от попадания грязи и влаги извне (рис. 3.4). Для резинового уплотнения крышки из прессованной стали набить смазку в пространство между краями и нанести ее на поверхность вала на участок, соприкасающийся с краями.
- (2) Поставить внутреннюю крышку с резиновым уплотнением в необходимом месте на валу.
- (3) Установить узел без крышки на вал в требуемом месте и надежно зафиксировать его. Процедура монтажа узлов с крышками на вал аналогична процедуре монтажа узлов со стопорными винтами и узлов с закрепительной втулкой.
- (4) Закрепить корпус на валу с помощью крепежных болтов.
- (5) Поставить внутреннюю крышку с резиновым уплотнением на корпус, вставив ее в



соответствующее углубление в корпусе и затянуть шестигранные болты на чугунной крышке. Крышка из прессованной стали впрессовывается в углубление в корпусе. При монтаже крышки из прессованной стали следует использовать киянку или пластмассовый молоток, как показано на рис. 3.5.

(6) Установить другую крышку с резиновым уплотнением или закрытой крышкой на корпус, выполнив процедуру, изложенную в вышеуказанном пункте (5).

Демонтаж крышек из прессованной стали следует проводить с помощью отвертки, как показано на рис. 3.6. Резиновое уплотнение, установленное в крышке, часто контактирует с относительно грубой нешлифованной поверхностью вала, в результате чего грязь и другие загрязняющие вещества попадают между кромок резинового уплотнения. Соответственно, резиновое уплотнение крышки может выходить из строя раньше, уплотнение отдельно резиновое стоящего подшипника, поэтому периодически необходимо менять резиновое уплотнение крышки. Рекомендуется снять фаску на торце вала, чтобы не повредить резиновое уплотнение при монтаже узла на вал.

3.3 Проверка

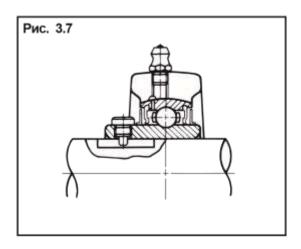
После завершения монтажа подшипниковых узлов следует проверить правильность их установки. Для проверки провернуть вал от руки и убедиться в его плавном вращении. Если проблемы не выявлены, сначала проверить работу узлов от двигателя без нагрузки на низкой частоте вращения. Затем постепенно увеличить частоту вращения и подать нагрузку до требуемого уровня. На этом этапе проверить наличие шумов и повышение температуры.

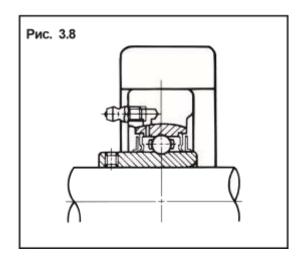
Шум

Для проверки наличия шума приставить отвертку к корпусу и послушать звук при вращении. Если проблемы, связанные с монтажом и т.д., отсутствуют, появятся посторонние шумы.

2) Повышение температуры

Измерить температуру на поверхности внутреннего кольца подшипника и корпуса во


время работы. Как правило, температура повышается до определенного уровня и стабилизируется за $2\sim3$ часа после начала работы. Однако если узлы установлены неправильно, или существуют другие проблемы, температура будет повышаться слишком сильно и не сможет стабилизироваться за соответствующее время.


Вышеизложенные проверки должны проводиться во время обкатки. Только убедившись в отсутствии проблем, можно начинать эксплуатацию машины в нормальном режиме. В ходе нормальной эксплуатации рекомендуется периодически проверять машину на шум и повышение температуры, чтобы выявить любую неисправность на раннем этапе.

3.4 Допускнарасширениевала Так как подшипниковые узлы фиксируются на валу стопорными винтами, закрепительной втулкой или эксцентриковым запорным кольцом, а также из-за того, что сферический внешний диаметр наружного кольца подшипника соответствует сферическому гнезду корпуса, допуск на расширение вала достаточно ограничен по сравнению с одинарными подшипниками.

небольшое Если расстояние между узлами расширение вала при повышении температуры не предполагается, допуск на расширение требуется. Однако В условиях, когда **УЗЛЫ** эксплуатируются при высоких температурах окружающей среды или рабочих условий, или когда узлы устанавливаются на длинный вал, они могут выйти строя под воздействием осевых нагрузок, образуемых при расширении вала, если допуск на такое расширение вала не будет предусмотрен.

Если узлы будут эксплуатироваться в рабочих условиях, при которых может произойти расширение вала, узел на неподвижной стороне необходимо надежно закрепить а узел на другой стороне следует валу, зафиксировать на валу стопорными винтами типа SH на участке, на котором находится шпоночный паз, чтобы вал расширялся в осевом направлении, как показано на рис. 3.7, или же использовать гильзовые корпуса, как показано на рис. 3.8. Хотя первый вариант достаточно распространен для указанных выше условий, рекомендуется использовать гильзовые корпуса. Для работы в условиях, когда расширение вала является обязательным условием, предусмотрен подшипниковый узел UCEP 200. Если для вала

со шпоночным пазом используется стопорный винт типа SH, рекомендуемым допуском вала являются h7 или h8.

3.5 Радиальныйвнутреннийзазор

Радиальные внутренние зазоры отдельно стоящего подшипника указаны в таблице 3.7 для цилиндрических отверстий и в таблице 3.8 для конических отверстий. Стандартный зазор (СО) считается удовлетворительным для большинства условий эксплуатации узлов. Однако если узлы эксплуатируются при высоких температурах окружающей среды

Таблица 3.7 Радиальныйвнутреннийзазордляподшипниковс цилиндрическимотверстием (состопорнымивинтамииэксцентриковым Ед. изм.: 00:001 ммд запорнымкольцом)

Номи	інальный ди: d	•	рстия					Обозначе	ние зазора					AS.	AH
				2		C	0	C	3	4		C	5	 Измеряемая нагрузка	
Свь	ыше	Включ	Включительно												
ММ	дюймы	MM	дюймы	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	КГ	фунт
10	0.3937	18	0.7087	_	9	3	18	11	25	18	33			2.5	5.51
					(3.5)	(1)	(7)	(4)	(10)	(7)	(13)				
18	0.7087	24	0.9449	_	10	5	20	13	28	20	36			5	11.02
					(4)	(2)	(8)	(5)	(11)	(8)	(14)				
24	0.9449	30	1.1811	_	11 (4.5)	5 (2)	20 (8)	13 (5)	28 (11)	23 (9)	41 (16)	36 (14)	56 (22)	5	11.02
30	1.1811	40	1.5748	_	11 (4.5)	6 (2)	20 (8)	15 (6)	33 (13)	28 (11)	46 (18)	41 (16)	61 (24)	5	11.02
40	1.5748	50	1.9685	_	11 (4.5)	6 (2)	23 (9)	18 (7)	36 (14)	30 (12)	51 (20)	46 (18)	69 (27)	5	11.02
50	1.9685	65	2.5591	_	15 (6)	8 (3)	28 (11)	23 (9)	43 (17)	38 (15)	61 (24)	56 (22)	81 (32)	15	33.07
65	2.5591	80	3.1496	-	15 (6)	10 (4)	30 (12)	25 (10)	51 (20)	46 (18)	71 (28)	67 (26)	97 (38)	15	33.07
80	3.1496	100	3.9370	_	18 (7)	12 (5)	36 (14)	30 (12)	58 (23)	53 (21)	84 (33)	79 (31)	114 (45)	15	33.07
100	3.9370	120	4.7244	_	20 (8)	15 (6)	41 (16)	36 (14)	66 (26)	61 (24)	97 (38)	92 (36)	132 (52)	15	33.07
120	4.7244	140	5.5118	_	23 (9)	18 (7)	48 (19)	41 (16)	81 (32)	71 (28)	114 (45)	104 (41)	154 (61)	15	33.07

Таблица 3.8 Радиальный внутренний зазордля подшипниковсконическим

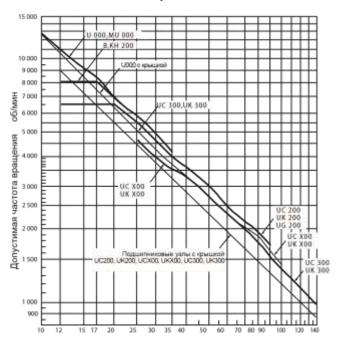
0,001 мм

отверстием (сзакрепительнойвтулкой) 0,0001 д

Н	оминальный диа d		пя				Обозначе	ние зазора						
0				СГ2		CI	CF1		СТЗ		CT4		Измеряемая нагрузка	
ММ	ыше дюймы	Включі мм	ительно дюймы	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	КГ	фунты	
	дютшь		дюлив		mano.		mano.		mano.		mano.		φ,ε.	
24	0.9449	30	1.1811	5	20	13	28	23	41	36	56	5	11.02	
				(2)	(8)	(5)	(11)	(9)	(16)	(14)	(22)			
30	1.1811	40	1.5748	6	20	15	33	28	46	41	61	5	11.02	
				(2)	(8)	(6)	(13)	(11)	(18)	(16)	(24)			
40	1.5748	50	1.9685	6	23	18	36	30	51	46	69	5	11.02	
				(2)	(9)	(7)	(14)	(12)	(20)	(18)	(27)			
50	1.9685	65	2.5591	8	28	23	43	38	61	56	81	15	33.07	
				(3)	(11)	(9)	(17)	(15)	(24)	(22)	(31)			
65	2.5591	80	3.1496	10	30	25	51	46	71	67	97	15	33.07	
				(4)	(12)	(10)	(20)	(18)	(28)	(26)	(38)			
80	3.1496	100	3.9370	12	36	30	58	53	84	79	114	15	33.07	
				(5)	(14)	(12)	(23)	(21)	(33)	(31)	(45)			
100	3.9370	120	4.7244	15	41	36	66	61	97	92	132	15	33.07	
				(6)	(16)	(14)	(26)	(24)	(38)	(36)	(52)			
120	4.7244	140	5.5118	18	48	4 1 08	81	71	114	104	154	15	33.07	
				(7)	(19)	(16)	(32)	(28)	(45)	(41)	(61)			

или если перепад температур между внутренним кольцом и наружным кольцом достаточно большой из-за воздействия тепла, передаваемого через вал, или когда температура повышается слишком сильно из-за работы на высокой частоте вращения, в качестве первоначального зазора должна быть принята более высокая величина зазора.

4. СМАЗКАПОДШИПНИКОВЫХУЗЛОВ


4.1 Предельнаячастотавращения

Предельная частота вращения подшипника зависит от типа и размера подшипника, типа смазки, метода смазки и т.д. Предельная частота вращения обычно выражается величиной dn (отверстие в мм х об/мин) или d dmn (______ в мм х об/мин).

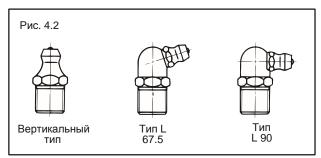
 2^2

Внутренняя конструкция подшипника подшипниковых узлов имеет глубокий желоб, но поскольку подшипник уплотняется с двух сторон резиновыми уплотнениями, удерживающими смазку внутри него, его максимальная частота вращения ограничена до линейной частоты вращения уплотнения при контакте. Предельная частота вращения подшипниковых узлов с соответствует линейной частоте крышками вращения установленных в крышке резиновых контакте. Соответственно, уплотнений при величина частоты вращения подшипниковых узлов определяется с учетом данных факторов. Пример предельной частоты вращения подшипника представлен на рис. 4.1

Рис. 4.1
Предельнаячастотавращения подшипниковыхузлов

Диаметротверстия (диаметрваладляузловскрышкой) мм

4.2 Заменасмазки


подшипниковых узлах применятся консистентная смазка, которую, как правило, необходимо периодически менять. Смазка, нагнетаемая шприцем через пресс-масленку, попадает в камеру подшипника, проходя по смазочной канавке в корпусе и через смазочное отверстие в наружном кольце подшипника. Для замены смазки рекомендуется набивать смазку во время работы подшипниковых узлов, чтобы избежать излишней смазки. Следует набивать стандартного 80% примерно ОТ объема заполнения при заводской смазке.

Предусмотрены три типа пресс-масленок, как показано в таблице 4.1 и на рис. 4.2. Выбор требуемого типа осуществляется, исходя из монтажного положения подшипниковых узлов.

Таблица 4.1 Типыпресс-масленок

No	T	Dee: 60	Кор	опус
Nº	Тип	Резьба	Тип	Nº
GU1	Верх.	1 / ₄ -28 UNF	P, IP, PH, EP, F,	201~213 305~313 X05~X13
G1	Верх.	PF 1/8	FC, FS, FL, FA, FK, C, ECH	214~218 314~328 X14~X20
GU2	L 67.5"	1/4-28 UNF	.	201~213 305~313 X05~X13
G2	L 67.5"	PF 1/8	'	214~217 314~328 X14~X17

Примечание: Корпустипа RP 200 комплектуетсяпрессмасленкой G1 длявсехразмеров.

Если на машине установлено много узлов, для периодической замены смазки часто используется централизованная система принудительной смазки. Однако в этом случае могут возникать неполадки при перегреве, поскольку стандартные подшипниковые узлы не имеют отверстий для выхода смазки. При этом при небольшой рабочей частоте вращения и меньшей периодичности замены смазки могут использоваться узлы

стандартного типа. Для принудительной смазки

1.3 Консистентнаясмазка

1) Выбор смазки

Если подшипники предназначены для длительной работы без подачи смазки, консистентная смазка должна быть высококачественной. Необходимо гщательно подбирать соответствующую смазку, т.к. существуют различные типы в зависимости от смешивания основ минерального масла и литиевокальциевого мыла согласно условиям Смазка на основе литиевого мыла эксплуатации. тревосходит все остальные типы по свойствам зодонепроницаемости, термостойкости устойчивости, иеханической И может использоваться при разных рабочих температурах. Для смазки подшипниковых узлов желательно использовать смазку на той же мыльной основе, что и первоначальная смазка.

2) Количество смазки

Количество смазки для подшипника должно быть достаточным для того, чтобы исключить контакт иеталла желобов и стальных шариков, обеспечить смазывание трущихся частей уплотнения и предотвращать попадание грязи и влаги из атмосферы.

рекомендуется применять смазку вязкостью 385~310 (NLGI № 0 или 1).

Хотя подшипниковые узлы предусматривают замену смазки, по рабочим условиям такая замена требуется не всегда.

В отличие от одинарных подшипников, замена смазки может не требоваться при отсутствии загрязнений в окружающей среде и невысокой рабочей температуре. Однако в любых рабочих условиях свойства смазки со временем ухудшаются, а в условиях влажности и высоких температур замена смазки является обязательным условием.

3) Интервал смазки

Периодичность смазки подшипниковых узлов в значительной степени зависит от типа и количества смазки, а также от рабочих условий.

Однако при применении в нормальных условиях рекомендуется менять смазку при достижении половины значения, полученного по следующей формуле:

Рабо темпер подши	ратура		lериодичность смазки	
		Усл	овия окружающей сре	ды
°C	F	Чистая	Грязная	Очень грязная, сильная влажность
50	122	3 года	6 месяцев	3 месяца
70	158	1 год	2 месяца	1 месяц
100	212	3 месяца	2 недели	1 неделя
120	248	6 недель	1 неделя	3 дня
150	302	2 недели	3 дня	ежедневно

log L = 4.73 - (t - 17.2) (0.0104 + 8.46
×
$$10^{-7}$$
 n) - 0.03 $\frac{nFr^{1.5}}{C^{1.9}}$ (4. 1)

где:

L : средний срок действия смазки

t : рабочая температура

подшипника °c n : частота

вращения вала об/мин Fr : радиальная

нагрузка кг

С : основная номинальная динамическая нагрузка подшипника кг

Таблица 4.2 Периодичностьсмазки

4.4 Диапазонрабочихтемператур Подшипниковые узлы используются не только при нормальных температурах, но также в различных эксплуатационных условиях при высоких и низких температурах.

Эксплуатация подшипниковых узлов в термоустойчивых и холодоустойчивых условиях возможна при использовании подходящего типа резинового уплотнения и смазки для конкретной рабочей температуры, указанных в таблице 4.3.

Для термоустойчивых условий следует учитывать снижение номинальной нагрузки подшипника и более крупный радиальный внутренний зазор подшипника по сравнению с нормальными условиями эксплуатации.

Таблица 4.3 Диапазонрабочихтемператур

Стандартные радиальные внутренние зазоры для термоустойчивых условий - C3 HR4 и C4 HR5 для подшипников с цилиндрическими отверстиями, и CT3 HR4 и CT4 HR5 для подшипников с конусными отверстиями.

При чрезмерно большом перепаде температур между внутренним кольцом и наружным кольцом подшипника необходимо определить подходящий радиальный внутренний зазор.

Примечание: По работе в условиях с рабочими температурами, превышающими 150°С, следует обратиться в нашу компанию, а также свериться со спецификациямиирабочимиусловиями.

Тип	Диапазонрабочих температур °C (°F)	Смазка	Резиновоеуплотнение	Цветмаслоотражателя
Обычныеусловия	От -15 до +100 (От +5 до +212)	Alvania Grease 3 (Shell)	Бутадиен-нитрильный каучук (NBR)	Черный
Термостойкий HR 4	Отнорм. тем-рыдо + 120 (Отнорм. тем-рыдо +248)	Super-Lube No. 3 (Yuken	Бутадиен-нитрильный каучук (NBR)	Желтый
Термостойкий HR 5	Отнорм. тем-рыдо + 200 (Отнорм. тем-рыдо + 392)	Kogyo Co Ltd.)	Силиконовыйкаучук	
Холодостойкий CR 2A	От -40 донорм. тем-ры (От -40 донорм. тем-ры)	Aero Shell 7 (Shell)	Силиконовыйкаучук	Серебристый

ДАННЫЕПОНОМИНАЛЬНОЙНАГРУЗКЕ

В следующих таблицах представлена номинальная нагрузка подшипников на разной частоте вращения при минимальном сроке службы 500 часов, среднем сроке службы 2500 часов.

Типыподшипников длялегких, нормальныхиумеренныхусловийэксплуатации Подшипник № Радиальная номинальная нагрузка при различной частоте вращения UC XOC UC 200 об/ми В UG 200 KH 200 33 ¹/₃ 50 100 250 500 750 1000 1200 1500 2000 2400 3600 5000 UD 200 (UCW 200 975 850 675 295 201~203 1~3 (1490)(1100)(870)(516) $(201 \sim 203)$ (2150)(1880)(650)(605)(560)(405)645 201 - 204 204 204 204 (2890)(2520)(1480)(1020)19301 (875)(810)(695)(545)1430 1250 435 5 205 205 205 205 2000 1750 1390 710 645 605 560 510 480 375 1020 810 (1240) нагрузка в кг (фунтах) 2310 1830 800 740 675 7 207 (1760) (1490) 207 X06 207 207 (5820)(5090) (4040)(2970)(2360)(2060) (1870)(1640)(1400) (1220)2990 2610 2070 1530 1210 1060 960 905 840 630 (1680) X07 208 208 208 (2670) (1590) (1380)(6590) (5760)(4570)(3370)(2340) (2120)(2000)(1850)3350 2320 2930 1080 1010 855 1710 1360 1190 209 (1780) 209 XO8 209 209 (7390) (6450) (5120)(3770)(3000)(2620)(2380)(2240)(2080)(1890) (1650) 3600 3150 2500 1840 1460 1280 1160 1090 1010 920 865 755 210 (7940) (6930)(5500) (4060)12810 (2550)(2400)(2230)(2030) (1910) 2250 211 X10 211 (9700)(8480)(4960)(3930)(3440)(3120)(2730)(2330)

212	X11	-	-		-	5350 (11800)	4670 (10300)	3710 (8180)	2730 (6030)	2170 (4780)	1900 14180)	1720 (3800)	1620 (3570)	1500 (3320)	1370 (3010)	1290 (2840)	
213	X12	-		-	-	5850 (12900)	5110 (11300)	4060 (8940)	2990 (6590)	2370 (5230)	2070 (4570)	1880 (4150)	1770 (3910)	1650 (3630)	1490 (3300)	1410 (3100)	
214	X13	-		-	-	6350 (14000)	5550 (12200)	4400 (9710)	3240 (7150)	2580 (5680)	2250 (4960)	2040 (4510)	1920 (4240)	1790 (3940)	1620 (3580)	1530 (3370)	
215	X14	-	-	-	-	6750 (14900)	5900 (13000)	4680 (10300)	3450 (7600)	2740 (6040)	2390 (5270)	2170 (4790)	2040 (4510)	1900 (4180)	1720 (3800)	1620 (3580)	
216	X15	-	-	-	-	7400 (16300)	6460 (14300)	5130 (11300)	3780 (8340)	3000 (6620)	2620 (5780)	2380 (5250)	2240 (4940)	2080 (4590)	1890 (4170)		
217	X16	-	-	-	-	8500 (18700)	7430 (16400)	5890 (13000)	4340 (9570)	3450 (7600)	3010 (6640)	2740 (6030)	2570 (5680)	2390 (5270)	2170 (4790)		
218	X17	-	-	-	-	9750 (21500)	8520 (18800)	6760 (14900)	4980 (11000)	3950 (8720)	3450 (7620)	3140 (6920)	2950 (6510)	2740 (6040)	2490 (5490)		
-	X18		-	-	-	11100 (24500)	9700 (21400)	7700 (17000)	5670 (12500)	4500 (9920)	3930 (8670)	3570 (7880)	3360 (7410)	3120 (6880)			
-	X20	-	-	-	-	13700 (30200)	12000 (26400)	9500 (20900)	7000 (15400)	5560 (12200)	4850 (10700)	4410 (9720)	4150 (2150)	3850 (8490)		·	

Примечание: Номинальная радиальная нагрузка подшипников серии SER 200 аналогична нагрузке серии UC 200. Длятяжелыхусловийэксплуатации

длятяжелыху	Сповииэксплуа	атации										
Подшиг	пник №				Рад	иальная н	оминальна	я нагрузка	на различ	ной частот	е вращени	Я
UC 300	UK 300	33 ¹ / ₃	50	100	250	500	750	1000	1200	1500	2000	2

UC 300	UK 300	33 ¹ / ₃	50	100	250	500	750	1000	1200	1500	2000	2400	3600	5000	об/мин
305	305	2170 (4780)	1900 (4180)	1500 (3320)	1110 (2440)	880 (1940)	770 (1700)	700 (1540)	655 (1450)	610 (1350)	555 (1220)	520 (1150)	455 (1010)	410 (900)	Номин
306	306	2730 (6020)	2390 (5260)	1890 (4170)	1400 (3080)	1110 (2440)	965 (2130)	880 (1940)	825 (1820)	765 (1690)	695 (1540)	655 (1450)	675 (1260)	515 (1130)	альная
307	307	3400 (7500)	2970 (6550)	2360 (5200)	1740 (3830)	1380 (3040)	1200 (2660)	1090 (2410)	1030 (2270)	955 (2110)	870 (1920)	815 (1800)	715 (1570)		Номинальная радиальная нагрузка в кг (фунтах)
308	308	4150 (9150)	3630 (7990)	2880 (6340)	2120 (4670)	1680 (3710)	1470 (3240)	1340 (2950)	1260 (2770)	1170 (2570)	1060 (2340)	995 (2200)	870 (1920)		ая нагруз
309	309	5250 (11570)	4590 (10100)	3640 (8030)	2680 (5910)	2130 (4690)	1860 (4100)	1690 (3730)	1590 (3510)	1480 (3250)	1340 (2960)	1260 (2780)	1100 (2430)		ка в кг (ф
310	310	6300 (13900)	5500 (12100)	4370 (9630)	3220 (7100)	2550 (5630)	2230 (4920)	2030 (4470)	1910 (4210)	1770 (3910)	1610 (3550)	1510 (3340)			унтах)
311	311	7300 (16100)	6380 (14100)	5060 (11200)	3730 (8220)	2960 (6530)	2590 (5700)	2350 (5180)	2210 (4870)	2050 (4530)	1870 (4110)	1760 (3870)			
312	312	8300 (18300)	7250 (16000)	5750 (12700)	4240 (9350)	3370 (7420)	2940 (6480)	2670 (5890)	2510 (5540)	2330 (5150)	2120 (4670)	2000 (4400)			
313	313	9450 (20800)	8260 (18200)	6550 (14400)	4830 (10600)	3830 (8450)	3350 (7380)	3040 (6710)	2860 (6310)	2660 (5860)	2410 (5320)	2270 (5010)			
314	314	10600 (23400)	9260 (20400)	7350 (16200)	5420 (11940)	4300 (9480)	3750 (8280)	3400 (7520)	3210 (7080)	2980 (6580)	2710 (5970)	2550 (5620)			
315	315	11600 (25600)	10100 (22300)	8040 (17700)	5930 (13100)	4700 (10400)	4110 (9060)	3730 (8230)	3510 (7750)	3260 (7190)	2960 (6530)				

														$\overline{}$
11.00	340	295	235	175	140	120	110	105	95	85	80	70	65	1
U 08	(750)	(656)	(520)	(385)	(305)	(265)	(240)	(225)	(210)	(190)	(180)	(165)	(140)	i

316	316	12500 (27600)	10900 (24100)	8670 (19100)	6390 (14100)	5070 (11200)	4430 (9760)	4020 (8870)	3790 (8350)	3510 (7750)	3190 (7040)		
317	317	13500 (29800)	11800 (26000)	9360 (20600)	6900 (15200)	5470 (12100)	4780 (10500)	4340 (9580)	4090 (9010)	3800 (8370)	3450 (7600)		
318	318	14600 (32200)	12800 (28100)	10100 (22300)	7460 (16400)	5920 (13100)	5170 (11400)	4700 (10400)	4420 (9750)	4100 (9050)			
319	319	15600 (34400)	13600 (30000)	10800 (23800)	7970 (17600)	6330 (13900)	5530 (12200)	5020 (11100)	4720 (10400)	4390 (9670)			
320	320	17700 (39000)	15460 (34100)	12300 (27100)	9040 (19900)	7180 (15800)	6270 (13800)	5700 (12600)	5360 (11800)	4980 (11000)			
321	321	18700 (41200)	16300 (36000)	13000 (28600)	9550 (21100)	7580 (16720)	6620 (14600)	6020 (13300)	5660 (12500)	5260 (11600)			
322	322	20900 (46100)	18300 (40300)	14500 (32000)	10700 (23500)	8470 (18700)	7400 (16300)	6730 (14800)	6330 (14000)				
324	324	21100 (46500)	18400 (40600)	14600 (32300)	10800 (27800)	8560 (18900)	7470 (16500)	6790 (15000)	6390 (14100)				
326	326	23400 (51600)	20400 (45100)	16200 (35800)	12000 (26400)	9490 (20900)	8290 (18300)	7530 (16600)	7090 (15600)				
328	328	26000 (57300)	22700 (50100)	18000 (39700)	13300 (29300)	10500 (23200)	9210 (20300)	8370 (18400)	7870 (17400)				

Серия Sil	lver	•	•				•			•	•		•	
Подшипник №				Рад	иальная но	минальна	я нагрузка	на различ	ной частот	е вращени	Я			
U000	33 ¹ / ₃	50	100	250	500	750	1000	1200	1500	2000	2400	3600	5000	об/мин
000	470 (1040)	410 (905)	325 (720)	240 (530)	190 (420)	165 (365)	150 (336)	140 (316)	130 (290)	120 (265)	116 (250)	100 (220)	90 (195)	Номин
001	520 (1150)	455 (1000)	360 (795)	265 (585)	210 (465)	185 (405)	165 (370)	155 (345)	145 (320)	135 (295)	125 (275)	110 (240)	100 (215)	ная
002	570 (1260)	500 (1100)	395 (870)	290 (640)	230 (510)	200 (445)	185 (405)	175 (380)	160 (355)	146 (320)	135 (300)	120 (265)	105 (235)	радиал
003	610 (1340)	535 (1180)	425 (935)	310 (685)	245 (545)	215 (475)	195 (435)	185 (405)	170 (380)	165 (345)	145 (325)	130 (280)	115 (255)	радиальная нагрузка
004	955 (2110)	835 (1840)	660 (1460)	690 (1080)	385 (855)	340 (745)	305 (680)	290 (640)	270 (590)	245 (540)	230 (505)	200 (440)	180 (395)	
005	1030 (2270)	900 (1980)	715 (1580)	525 (1160)	420 (920)	365 (805)	330 (730)	310 (690)	290 (640)	265 (580)	250 (545)	215 (475)	195 (425)	в кг (фу
006	1350 (2980)	1180 (2600)	935 (2060)	690 (1520)	545 (1210)	480 (1050)	435 (960)	410 (900)	380 (836)	345 (760)	325 (715)	285 (625)	255 (560)	(фунтах)
007	1630 (3590)	1420 (3140)	1130 (2490)	835 (1840)	660 (1460)	575 (1270)	525 (1160)	495 (1090)	460 (1010)	415 (920)	390 (865)	340 (755)	306 (675)	

кг - Н

ТАБЛИЦАПЕРЕВОДАОСНОВНОЙНОМИНАЛЬНОЙНАГРУЗКИ

		Подшипі	ник №				н. номин. нагрузка	номин.	новн. . статич. рузка
UC 200	UC X00	UD 200	В	UG200	KH 200		С	(Со
UK 200	UK X00	0D 200	ь	00200	KH 200	КГС	Н	кгс	Н
(UCW 200) (201 - 203)	•	-	1 -3	201 - 203	201 - 203	975	9550	455	4450
201 - 204		204	4	204	204	1310	12800	630	6200
205		205	5	205	205	1430	14000	710	6950
206	X05	206	6	206	206	2000	19600	1020	10000
207	X06	207	7	207	207	2640	25900	1400	13700
208	X07	208		208	208	2990	29300	1600	15700
209	X08	209		209	209	3350	33000	1810	17800
210	X09	210		210	210	3600	35500	2010	19700
211	X10			211	211	4400	43000	2550	25000
212	X11			212		5350	52500	3150	31000
213	X12					5850	57500	3500	34000
214	X13					6350	62000	3800	37500
215	X14					6750	66000	4200	41000
216	X15					7400	72500	4550	44500
217	X16					8500	83500	5500	52000
218	X17					9750	95500	6300	60500
	X18					11100	109000	7100	69500
	X20					13700	134000	9100	89000
					U000	470	4600	198	1940
		мечание:			U001	520	5100	229	2240
Для серии		педует брат ощего узла			U002	570	5600	263	2580
пагрузку СС	orectorsy.	ощего узла	серии	JU 200 .	U003	610	6000	297	2910
					U004	955	9350	470	4610
					U005	1030	10100	530	5190
					U006	1350	13200	740	7250
					U007	1630	15900	915	8970

U 08

340

3300 136 1330

	Подшипник №		н. номин. нагрузка	Основ номин.	вн. стат. нагрузка
	UC 300	(С	(Со
	UK 300	КГС	Н	КLС	
	305	2170	2120		T d
	306	2730	26800	1420	13900
	307	3400	33500	1820	17800
	308	4150	40500	2270	22300
	309	5250	51500	3050	27200
	310	6300	61500	3650	35500
	311	7300	71500	4250	41500
	312	8300	81500	4900	48500
	313	9450	92500	5650	55500
	314	10600	104000	6450	63000
	315	11600	114000	7200	71500
	316	12500	123000	8150	80000
	317	13500	132000	9100	89000
	318	14600	143000	10100	99000
	319	15600	153000	11100	109000
	320	17700	173000	13300	131000
	321	18700	183000	14500	142000
	322	20900	205000	17000	167000
	324	21100	207000	17000	167000
-	326	23400	229000	19600	194000
ļ	328	26000	255000	22400	222000

ASAHIШАРНИРНЫЕ ГОЛОВКИ

СФЕРИЧЕСКИЕПОДШИПНИКИ - НАКОНЕЧНИКИ

СЕРИЯ FB с прокладкой ПТФЭ (*) самосмазывающаяся

Стр 86.

FBF охватывающий наконечник

FBM вставной наконечник

Прокладка ПТФЭ

Корпус

Внутреннее сферическое кольцо

Гладкая самоцентрующаяся поверхность

*ПТФЭ

усиленная политетрафторэтиленовая

смола

СФЕРИЧЕСКИЕ ПОДШИПНИКИ

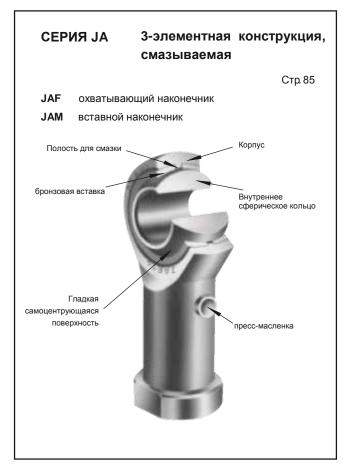
Стр 88.

JAS 3-элементная конструкцияJBS 2-элементная конструкция

смазочная канавка

полость для смазки

Корпус


бронзовая вставка

Сферическое внутреннее кольцо

гладкая самоцентрующаяся поверхность

УСТРОЙСТВО И ТИПЫ ШАРНИРНЫХ ГОЛОВОК

ОСОБЕННОСТИ ШАРНИРНЫХ ГОЛОВОК

Высокая надежность

Шарнирные головки изготавливаются по прогрессивным технологиям на основе богатого опыта производства точных подшипников с гарантией высокой надежности.

Точная самоцентровка

Шарнирные головки обеспечивают точную самоцентровку между суперфинишированным сферическим внешним диаметром внутреннего кольца и соответствующим сферическим внутренним диаметром вставок или корпуса с компенсацией ошибок центровки и отклонений вала машины.

Большой угол смещения

Шарнирные головки имеют большой угол смещения для плавной передачи любого комплексного движения.

Высокая грузоподъемность

Шарнирные головки пригодны для радиальной, осевой, высокой и ударной нагрузок и любых комбинированных нагрузок, поскольку произведены с точностью и собраны с использованием отобранных материалов внутреннего кольца, вставок и корпуса.

Высокая износоустойчивость

Шарнирные головки обладают высокой износоустойчивостью благодаря использованию высококачественных материалов.

Удобство в обращении

Шарнирные головки представляют собой компактную сборку и всегда готовы для непосредственного применения в машине; монтаж прост и не вызывает проблем.

СИСТЕМА НУМЕРАЦИИ ШАРНИРНЫХ	ГОЛОВОК	
Обозначение серии	Обозначение типа корпуса	диаметр отверстия
JA : 3-элементная конструкция со вставкой из	F : обхватывающий наконечник	
медного сплава	М : вставной наконечник	для указания диаметра отверстия внутреннег
FB : усиленная прокладка ПТФЭ	S : сферические подшипники	кольца в миллиметрах
H : 2-элементная конструкция JB: 2-элементная конструкция		

Примечание: Для типов наконечников с левой резьбой в коде наконечника добавлена буква L (например, JAFL 5)

диаметр отверстия
10мм
охватывающий
наконечник 3элементная
конструкция

диаметр отверстия 8 мм обхватывающий наконечник прокладка ПТФЭ

ПРИМЕРЫ

шарик

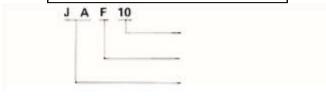
Обхватывающийнаконечник тип ЈАГ

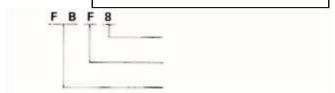
ДляСЕТОРсостандартнойрезьбой, см. стр. 89

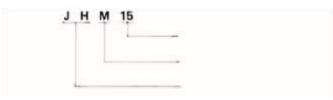
3-элементная конструкция смазываемый Материалы:

Корпус - углеродистая сталь,

монохром. покр.

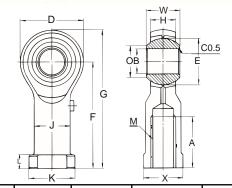

диаметр отверстия 15мм вставной наконечник 2-элементная конструкция диаметр


отверстия 20 мм


сферический

подшипник

3-элементная
конструкция



J A S 20

- высокоуглеродистая хром. подшипниковая сталь

вставка - медный

Nº							Разме	ры,	ı	им					См	еще	ние	Мин. стат. радиальная	статич	акс. ческая зка, кг	Вес, г
	В	W	Η	0	D	F	G	Α	K	Χ	J	الـ	E	М	α1	α2	α3	нагрузка на излом, кг	радиал	осев.	
JAF 5	5	8	7	7.71	16	27	35	14	12	9	9	4	11.11	M 5x0.8	4	7	24	930	620	230	18
JAF 6	6	9	7	8.96	18	30	39	14	13	11	10	5	12.7	M 6x1	7	11	28	1040	690	270	26
JAF 8	8	12	9	10.4	22	36	47	17	16	14	12.5	5	15.88	M 8x1.25	8	14	25	1490	990	430	45
JAF 10	10	14	11	12.92	26	43	56	21	19	17	15	6.5	19.05	M10x1.5	7	12	23	2010	1340	630	76
JAF 12	12	16	12	15.43	30	50	65	24	22	19	17.5	6.5	22.23	M12x1.75	8	13	24	2470	1650	800	114
JAF 14	14	19	14	16.86	34	57	74	27	25	22	20	8	25.4	M14x2	9	14	23	3130	2090	1070	158
JAF 15	15	20	14	18.12	36	61	79	30	26	22	21	8	26.99	MI 4x2	10	16	24	3330	2220	1130	186
JAF 16	16	21	15	19.39	38	64	83	33	27	22	22	8	28.58	MI 6x2	10	15	24	3700	2470	1290	200
JAF 17	17	22	16	20.63	40	67	87	34	31	27	24	10	30.16	MI 6x1.5	9	14	23	4090	2730	1450	259
JAF 18	18	23	17	21.89	42	71	92	36	31	27	25	10	31.75	M18x1.5	9	14	23	4490	2990	1620	288
JAF 20	20	25	18	24.38	46	77	100	40	37	32	27.5	10	34.93	M20x1.5	9	14	24	5180	3460	1890	372
JAF 22	22	28	20	25.84	50	84	109	43	37	32	30	12	38.1	M22x1.5	10	15	23	6100	4070	2290	475
JAF 25	25	31	22	29.6	56	94	122	48	42	36	33.5	12	42.86	M24x2	10	15	23	7420	4950	2830	673
JAF 28	28	35	25	32.29	62	103	134	53	46	41	37.5	12	47.63	M27x2	10	15	22	9070	6050	3570	910

JAF 30 | 30 | 37 | 26 | 34.81 | 67 | 110 | 143.5 | 56 | 50 | 41 | 40 | 15 | 50.8 | M30x2 | 10 | 15 | 23 | 11000 7370 | 3960 | 1050

Вставнойнаконечник

тип ЈАМ

3-элементная конструкция

смазываемый Материалы:

Корпус - углеродистая сталь, монохром.

шарик - высокоуглеродистая хром.

подшипниковая сталь

вставка медный сплав

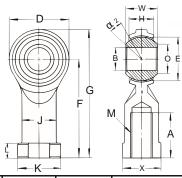
Nº					Разм	иеры,	ММ				См	ещен	ие	миним. стат. радиальная нагрузка на	Ма статич нагруз		Вес, г
	В	W	Н	0	D	F	G	Α	Е	М	α1	α2	α3	излом, кг	радиал.	осев.	
JAM 5	5	8	7	7.71	16	33	41	20	11.11	M 5x0.8	4	7	24	490	330	230	14
JAM 6	6	9	7	8.96	18	36	45	22	12.7	M 6x1	7	11	28	690	460	270	19
JAM 8	8	12	9	10.4	22	42	53	25	15.88	M 8x1,25	8	14	25	1260	840	430	36
JAM 10	10	14	11	12.92	26	48	61	29	19.05	M10x1.5	7	12	23	2010	1340	630	60
JAM 12	12	16	12	15.43	30	54	69	33	22.23	M12x1.75	8	13	24	2470	1650	800	89
JAM 14	14	19	14	16.86	34	60	77	36	25.4	M14x2	9	14	23	3130	2090	1070	129
JAM 15	15	20	14	18.12	36	63	81	38	26.99	M14x2	10	16	24	3330	2220	1130	148
JAM 16	16	21	15	19.39	38	66	85	40	28.58	M16x2	10	15	24	3700	2470	1290	181
JAM 17	17	22	16	20.63	40	69	89	42	30.16	M 16 X 1.5	9	14	23	4090	2730	1450	206
JAM 18	18	23	17	21.89	42	72	93	44	31.75	M 18x1.5	9	14	23	4490	2990	1620	250
JAM 20	20	25	18	24.38	46	78	101	47	34.93	M20x1.5	9	14	24	5180	3460	1890	333
JAM 22	22	28	20	25.84	50	84	109	51	38.1	M22x1.5	10	15	23	6100	4070	2290	430
JAM 25	25	31	22	29.6	56	94	122	57	42.86	M24x2	10	15	23	7420	4950	2830	575
JAM 28	28	35	25	32.29	62	103	134	62	47.63	M27x2	10	15	22	9070	6050	3570	795
JAM 30	30	37	26	34.81	67	110	143.5	66	50.8	M30x2	10	15	23	11000	7340	3960	996

Примечание: Для типов наконечников с левой резьбой в коде наконечника добавлена буква L (например, JAML 5).

Обхватывающийнаконечник

* тип FBF

прокладка ПТФЭ самосмазывающийся Материалы:


- углеродистая сталь, монохром. покр. Корпус шарик

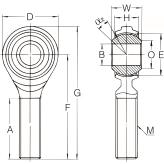
- высокоуглеродистая хром. подшипниковая

прокладка усиленная

политетрафторэтиленовая смола

Nº							Разі	меры,		ММ					Смещение α2	миним. стат. радильная	Ман статиче нагрузі	еская	Вес, г
	В	W	Н	0	D	F	G	А	K	Χ	J	L	E	М	üΖ	нагрузка на излом, кг	радиал.	осев.	
FBF 5	5	8	7	7.7	16	27	35	12.5	12	10	9	4	11.11	M 5x0.8	7	880	590	230	16
FBF 6	6	9	7	9	18	30	39	13.5	13	11	10	5	12.7	M 6x1	11	1000	650	250	20
FBF 8	8	12	9	10.4	22	36	47	16	16	14	12.5	5	15.88	M 8x1.25	14	1200	800	300	37
FBF 10	10	14	11	12.9	26	43	56	19.5	19	17	15	6.5	19.05	M10x1 .5	12	1550	1050	390	61
FBF 12	12	16	12	15.4	30	50	65	24	22	19	17.5	6.5	22.23	M12x1.75	13	1950	1300	500	89
FBF 14	14	19	14	16.9	34	57	74	27	25	22	20	8	25.4	M14x2	14	2550	1700	650	135
FBF 16	16	21	15	19.4	38	64	83	33	27	22	22	8	28.58	M16x2	15	3150	2100	800	171
FBF 18	18	23	17	21.9	42	71	92	36	31	27	25	10	31.75	M 18x1.5	14	3800	2550	950	246
FBF 20	20	25	18	24.4	46	77	100	40	34	30	27.5	10	34.93	M20x1.5	14	4500	3000	1100	314
FBF 22	22	28	20	25.8	50	84	109	43	37	32	30	12	38.1	M22xl.5	15	5300	3550	1350	410

Вставнойнаконечник * тип FBM


прокладка ПТФЭ самосмазывающийся

Материалы:

Корпус - углеродистая сталь, монохром. покр. шарик - высокоуглеродистая хром. подшипниковая

прокладка усиленная политетрафторэтиленовая смола

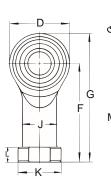
									CO. 10 P.						
Nº					Разі	меры,	MN	1			Смещение	миним. стат. радиальная нагрузка на	Макс. стат нагруз		Вес, г
	В	W	Н	0	D	F	G	Α	E	М	α2	излом, кг	радиал.	осев.	
FBM 5	5	8	7	7.7	16	33	41	20	11.11	M 5x0.8	7	400	250	100	11
FBM 6	6	9	7	9	18	36	45	22	12.7	M 6x1	11	600	400	150	15
FBM 8	8	12	9	10.4	22	42	53	25	15.88	M 8x1.25	14	1100	750	300	30
FBM 10	10	14	11	12.9	26	48	61	29	19.05	M 10x1.5	12	1550	1050	400	48
FBM 12	12	16	12	15.4	30	54	69	33	22.23	M12x1.75	13	1950	1300	500	76
FBM 14	14	19	14	16.9	34	60	77	36	25.4	M14x2	14	2550	1700	650	115
FBM 16	16	21	15	19.4	38	66	85	40	28.58	MI 6x2	15	3150	2100	800	159
FBM 18	18	23	17	21.9	42	72	93	44	31.75	M18x1.5	14	3800	2550	950	222
FBM 20	20	25	18	24.4	46	78	101	47	34.93	M20x1.5	14	4500	3000	1150	292
FBM 22	22	28	20	25.8	50	84	109	51	38.1	M22x1.5	15	5310	3550	1350	381

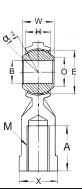
типов наконечников с левой резьбой в коде наконечника добавлена буква L (например, FBML 5). Примечание: Для

Конструкция с шариком с хромовым покрытием по внутреннему диаметру – по специальному заказу. Корпуси шарик из нержавеющей стали – по специальному заказу.

Обхватывающийнаконечник

тип JHF


2-элементная конструкция

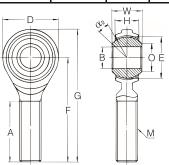

с шестигранником смазываемый Материалы:

корпус углеродистая сталь, никел. покр. - высокоуглеродистая хром. подшипниковая

шарик

	Nº						Pas	вмеры,	М	IM					Миним. стат. радиальная	Ма статич нагруз	еская	Вес, г
		В	>	I	0	D	F	G	Α	Z	Υ	ш	М	α2	нагрузка на излом, кг	радиал.	осев.	
-	JHF 5	5	8	7	7.7	16	27	35	12.5	9.2	8	11.11	M 5x0.8	7	430	290	350	19
	JHF 6	6	9	7	9	18	30	39	13.5	11.5	10	12.7	M 6x1	11	690	460	480	25
	JHF 8	8	12	9	10.4	22	36	47	16	13.9	12	15.88	M 8x1.25	14	770	510	690	47
•	JHF 10	10	14	11	12.9	26	43	56	19.5	16.2	14	19.05	M10x1.5	12	1520	1010	1070	78
	JHF 12	12	16	12	15.4	30	50	65	24	19.6	17	22.23	M12x1.75	13	1810	1210	1390	111
	JHF 14	14	19	14	16.9	34	57	74	27	21.9	19	25.4	M14x2	14	2900	1930	1900	168
									1			1					l	I

^{*} Примечание: нескладируемая позиция. По наличию просьба обращаться в нашу компанию.


JHF 16	16	21	15	19.4	38	64	83	33	25.4	22	28.58	M1 6x2	15	3020	2010	2320	192
JHF 18	18	23	17	21.9	42	71	92	36	27.7	24	31.75	M18x1.5	14	4040	2690	2980	306
JHF 20	20	25	18	24.4	46	77	100	40	31.2	27	34.93	M20x1.5	14	5130	3420	3490	400

Вставнойнаконечник тип ЈНМ

2-элементная конструкция смазываемый Материалы:

углеродистая сталь, хром. покр. шарик корпус высокоуглеродистая хром. подшипниковая сталь

									COOK						
Nº					Разм	еры,	ММ				Смещение	миним. стат. радиальная нагрузка на	Макс. ста нагруз		Вес, г
14-	8	W	Н	0	D	F	G	Α	E	М	α2	излом, кг	радиал.	осев.	DCC, 1
JHM 5	5	8	7	7.7	16	33	41	20	11.11	M 5x0.8	7	430	290	350	11
JHM 6	6	9	7	9	18	36	45	22	12.7	M 6x1	11	690	460	480	16
JHM 8	8	12	9	10.4	22	42	53	25	15.88	M 8x1.25	14	770	510	690	30
JHM 10	10	14	11	12.9	26	48	61	29	19.05	M10x1.5	12	1520	1010	1070	50
JHM 12	12	16	12	15.4	30	54	69	33	22.23	M 12x1.75	13	1810	1210	1390	77
JHM 14	14	19	14	16.9	34	60	77	36	25.4	M14x2	14	2900	1930	1900	114
JHM 16	16	21	15	19.4	38	66	85	40	28.58	M16x2	15	3020	2010	2320	161
JHM 18	18	23	17	21.9	42	72	93	44	31.75	M18x1.5	14	4040	2690	2980	221
JHM 20	20	25	18	24.4	46	78	101	47	34.93	M20x1.5	14	5130	3420	3490	292
										_					

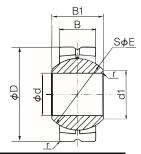
Примечание: Для типов наконечников с левой резьбой в коде наконечника добавлена буква L (например, JHML 5).

Конструкция с шариком из металлокерамического сплава доступна по специальному заказу.

Сферическийподшипник

тип JAS

3-элементная конструкция смазываемый


Материалы:

углеродистая сталь, монохром., лист шарик Корпус

высокоуглеродистая хром. подшипниковая сталь

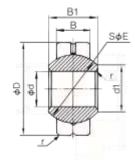
медный сплав вставка

No				Размеры	I, N	1M				Смещен	1e	Макс. ста нагруз		D
Nº	В	W	Н	0	D	С	J	E	α1	α2	α3	радиал.	осев.	Вес, г
JAS 5	5	8	7	7.71	16	0.5	1.5	11.11	3	7	24	930	230	10
JAS 6	6	9	7	8.96	18	0.5	1.5	12.7	6	11	28	1070	270	12
JAS 8	8	12	9	10.4	22	0.5	1.5	15.88	8	14	25	1720	430	24
JAS 10	10	14	11	12.92	26	0.5	1.5	19.05	7	12	23	2510	630	40
JAS 12	12	16	12	15.43	30	1	2	22.23	8	13	24	3200	800	58

JAS 14	14	19	14	16.86	34	1	2	25.4	9	14	23	4270	1070	86
JAS 15	15	20	14	18.12	36	1	2	26.99	10	16	24	4530	1130	98
JAS 16	16	21	15	19.39	38	1	2	28.58	9	15	24	5140	1290	116
JAS 17	17	22	16	20.63	40	1	2.5	30.16	9	14	23	5790	1450	135
JAS 18	18	23	17	21.89	42	1.5	2.5	31.75	9	14	23	6480	1620	157
JAS 20	20	25	18	24.38	46	1.5	2.5	34.93	9	14	24	7540	1890	200
JAS 22	22	28	20	25.84	50	1.5	2.5	38.1	10	15	23	9140	2290	262
JAS 25	25	31	22	29.6	56	1.5	3	42.86	10	15	23	11320	2830	362
JAS 28	28	35	25	32.29	62	1.5	3	47.63	10	15	22	14290	3570	500
JAS 30	30	37	26	34.81	67	2	3	50.8	10	15	23	15850	3960	608

Сферическийподшипник тип JBS

2-элементная конструкция смазываемый


Материалы:

шарик

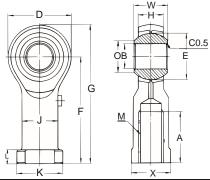
Корпус - высокоуглеродистая хром.

подшипниковая сталь, монохром. покрытие высокоуглеродистая хром.

	подши	пникова	я сталь											
Nº				Размеры	, М	И				мещен	е	Макс. ста нагру:		Вес, г
	В	W	Н	0	D	С	J	Е	α1	α2	α3	радиал.	осев.	
JBS 5	5	8	5.6	7.71	16	0.5	1.5	11.11	9	15	32	2490	620	8
JBS 6	6	9	6.4	8.96	18	0.5	1.5	12.7	9	14	31	3250	810	11
JBS 8	8	12	7.9	10.4	22	0.5	1.5	15.88	11	19	29	5020	1260	21
JBS 10	10	14	9.5	12.92	26	0.5	1.5	19.05	10	17	28	7250	1810	35
JBS 12	12	16	11.1	15.43	30	1	2	22,23	10	16	27	9870	2470	53
JBS 14	14	19	12.5	16.86	34	1	2	25.4	11	18	26	12900	3220	77
JBS 15	15	20	13.5	18.12	36	1	2	26.99	11	17	26	14570	3840	91
JBS 16	16	21	14.3	19.39	38	1	2	28.58	11	17	25	16350	4090	107
JBS 17	17	22	15.1	20.63	40	1	2.5	30.16	10	16	25	18220	4560	125
JBS 18	18	23	15.9	21.89	42	1.5	2.5	31.75	11	16	25	20190	5050	150
JBS 20	20	25	17.5	24.38	46	1.5	2.5	34.93	10	15	25	24450	6110	187

Обхватывающийнаконечник СтандартСЕТОР

JAF-S (тип CETOP)


3-элементная конструкция смазываемый

Материалы:

Корпус - углеродистая сталь, монохром, лист шарик - высокоуглеродистая хромированная

подшипниковая сталь

No							Размер	οы,		ММ					См	ещен	ние	миним. стат.	Макс. нагр (к	узка	Bec
	В	W	Ι	0	D	F	G	Α	K	Х	J	L	E	M	α1	α2	α3	нагрузка на излом, кг	радиал	осев.	[۲]
JAF 10S	10	14	11	12. 92	26	43	56	21	19	17	15	6.5	19.05	M10 x 125	7	12	23	2010	1340	630	76
JAF 12S	12	16	12	15. 43	30	50	65	24	22	19	17.5	6.5	22.23	M12 x 25	8	13	24	2470	1650	800	114
JAF 16S	16	21	15	19. 39	38	64	83	33	27	22	22	8	28.58	M16 x 1.5	10	15	24	3700	2470	1290	200
JAF 30S	30	37	26	34. 81	67	110	143.5	56	50	41	40	15	50.8	M27 x 2	10	15	23	11000	7370	3960	1050

КОНСТРУКТИВНЫЕХАРАКТЕРИСТИКИ

1. ДОПУСКИ

Таблица 1.1

Допуск	Ед. изм.: мм
Части машины	Допуск
Диаметр отверстия сферического шарика	H7
Ширина сферического шарика	0 -0.1
Внешний диаметр корпусов (типы JAS и JBS, Сферические подшипники)	0 - 0.012

Таблица 1.2

Максимальный зазор	единица : мм
Радиальный зазор	макс. 0,05
Осевой зазор	макс. 0,15

2. ДОПУСКАЕМАЯНАГРУЗКА

МИНИМАЛЬНЫЕ СТАТИЧЕСКИЕ РАДИАЛЬНЫЕ НАГРУЗКИ НА ИЗЛОМ основываются на предельном сопротивлении тела, оказывающего влияние на вращение шарика вручную в состоянии без нагрузки после того, как стандартные нагрузки прикладывались в течение одной минуты в статичном положении.

ВЫБОРВАЛА

Допуск вала следует выбирать в зависимости от рабочей нагрузки и типа ожидаемой в данном случае нагрузки

Таблица 3.1

ПРЕДЕЛЬНЫЕ РАДИАЛЬНЫЕ НАГРУЗКИ означают предельные радиальные нагрузки, обеспечивающие ровное вращение шарика, на основе экспериментальной проверки, проведенной с приложением 2,5килограммовой радиальной нагрузки после снятия стандартных нагрузок, прилагаемых на одну минуту в статическом положении.

ПРЕДЕЛЬНЫЕ ОСЕВЫЕ НАГРУЗКИ означают предельные осевые нагрузки, обеспечивающие ровное вращение шарика, на основе экспериментальной проверки, проведенной с приложением 2,5-килограммовой радиальной нагрузки после снятия стандартных нагрузок, прилагаемых на одну минуту в статическом положении.

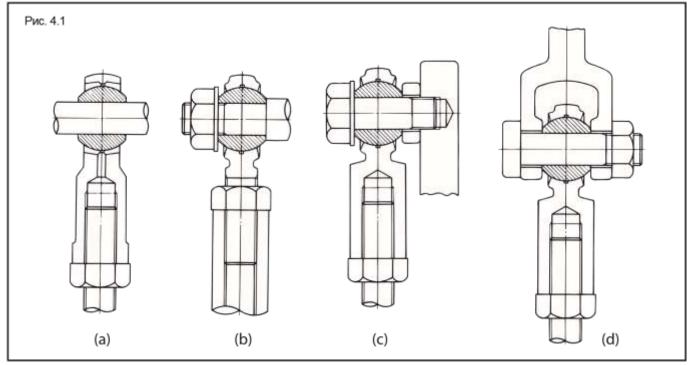
и внутреннего диаметра корпуса. В приводимых ниже таблицах рекомендуемые допуски. Вал, на который устанавливается шарнирная головка, должен быть без искривлений и вмятин.

Рекомендованный допуск вала для наконечников

		Ед	. изм.: 0,001 мм		
	номинальный	размер вала (мм)	n6	р6	r6
	свыше	включая.	110	ρο	10
	3	6	+16 ~ + 8	+20 ~ +12	+23 ~ +15
	6	10	+19 ~ +10	+24 ~ +15	+28 ~ +19
Я,	10	18	+23 ~ +12	+29 ~ +18	+34 ~ +23
6.	18	30	+28 ~ +15	+35 ~ +22	+41 ~ +28

Примечание: Если нагрузка достаточно высокая, следует использовать r6.

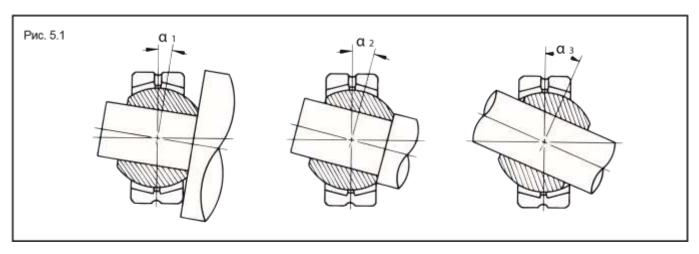
Таблица 3.2


Рекомендованный допуск вала для сферических подшипников

		Ед. изм.: 0,0	001 мм	
Ном. внутре	нний диаметр, мм	J7	V7	MZ
свыше	включая.	37	K7	M7
10	18	+ 10 ~ - 8	+6 ~ -12	0 ~ -18
18	30	+ 12 ~ - 9	+6 ~ - 15	0 ~ -21
30	50	+ 14 ~ - 11	+7 ~ - 18	0 ~ - 25
50	80	+ 18 ~ - 12	+9 ~ - 21	0 ~ - 30

4. ИНСТРУКЦИИПОМОНТАЖУ

Для эксплуатации в нормальных условиях используйте фитинги на вал, как показано на рис. 4,1(а). Если предполагаются комплексные передвижения, совмещенные или переменные нагрузки, рекомендуется блокировка с


помощью гайки или болта после установки сферического шарика на вал, как показано на рис. (b), (c) и (d). При монтаже на вал использовать покрытие на поверхность сферического шарика.

5. УГОЛСМЕЩЕНИЯ

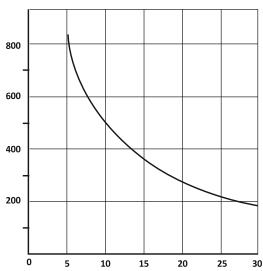
Существуют три различных типа монтажа шарнирной головки, как показано ниже. Угол смещения изменяется в зависимости от типа применения монтажа. Угол смещения представлен в каждой таблице размеров.

6. ПРЕДЕЛЬНАЯРАБОЧАЯЧАСТОТА ВРАЩЕНИЯ

Предельная рабочая частота вращения шарнир-

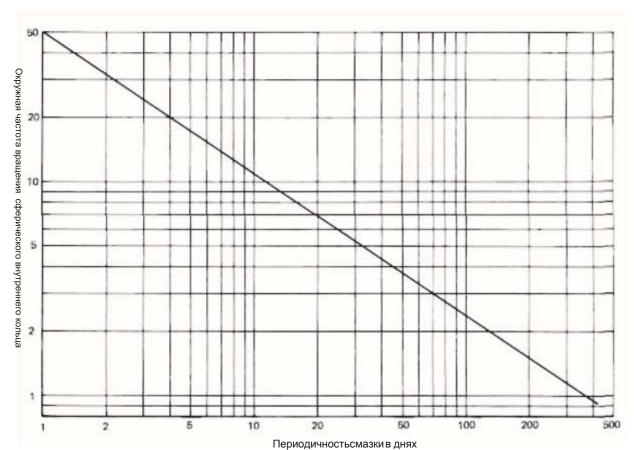
ной головки определяется нагрузкой и окружной частотой вращения сферического шарика. Максимальная сферическая частота вращения при небольшой нагрузке - 50 м/мин. Рис. 6.1 показывает соотношение диаметра отверстия и допустимой частоты вращения.

7. CMA3KA


В нормальных условиях для шарнирных головок используется смазка. Смазка накачивается насосом через специальное отверстие на корпусе наконечников или подается в полость для смазки через смазочную канавку на внешнем диаметре сферических подшипников. Примечание: шарнирные головки не смазываются на заводе

смазка должна производиться при монтаже на вал.

Внимательно выбирать смазку из многих доступных вариантов, ориентируясь на


Рис. 6.1

Частота вращения, об/мин

Диаметр отверстия, мм конкретное применение. В общих случаях, рекомендуется смазка на литиевой основе, отличающаяся водоустойчивостью, жаростойкостью и механической устойчивостью для различных температур.

Смазка на головке меняется при вращении; используется достаточное количество смазки, наносимой до тех пор, пока смазка не выступит между сферическим шариком и подшипником. Периодичность смазывания определяется рабочими условиями типом смазки. Следующий рисунок 7.1 иллюстрирует м/мин

большинство ситуаций и может использоваться как руководство. Обычно диапазон рабочих температур - 15°C ~ + 100°C.

Примечание: Относительно условий применения при рабочей температуре более 100°С необходимо проконсультироваться с производителем.

JP - 1973 JQA - 1973

ПЛАСТИКОВАЯ СЕРИЯ ПОДШИПНИКОВЫХ УЗЛОВ

Подшипники из нержавеющей стали в термопластиковых корпусах

- Антикоррозийные, водонепроницаемые и устойчивые к химическому воздействию В легком корпусе
- Полная взаимозаменяемость

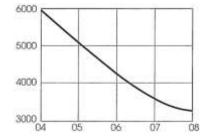
• Для пищевых, упаковочных, текстильных механизмов, для химической аппаратуры и т.д.

Пластиковая серия подшипниковых узлов

1. Введение

Пластиковый корпус сделан из высококачественного стеклонаполненного термопластического полиэстера, в который встроен нержавеющий шариковый подшипник. Гигиеническая конструкция — цельная основа корпуса предотвращает появление различных микробов. Доступны также и пластиковые крышки для подшипников и валов для лучшей защиты от загрязнений и для большей безопасности.

2. Материал


	•		
	Части	Материал	Ы
Тодшипники	Наружные и внутренние кольца Шарики	Нержавеющая сталь	SUS440C (EQ.) SUS440C
Под	Сепаратор Маслоотражатели Установочные винты	Пержавеющая сталь	SUS304
	Резиновое уплотнение	Бутадиеннитрильный каучук	-
Корпус		Термопластик	-
	Установочные втулки в отверстиях для болтов	Норжароющая сталь	SUS304
	Приемник для масленки Масленка для смазки	Нержавеющая сталь	SUS303 Латунь

- 3. Антикоррозийные свойства
- 6. Запас прочности для корпуса

						Unit: kN
No. PPL, FPL,					€ _{Wo}	
NFL	Wυ	Ws Wt	W□	W_{T}		WD
204	7.7	8.8 5	15.9	3.6		8.5
205	10	13.7 8.1	13	3.3		11.1
206	10.6	12.65.7		18	3.3	14.5
207	10.8	12.77.5	18.5	3.5		14.9
208	11.1	12.7 ^{7.5} 13.1 ^{8.5}	19.1	3.8		15.1

7. Предельная частота вращения

Внутренний диаметр отверстия, No

8. Диапазон рабочих температур

- 20 ~ + 80°C

			Материалы		
Условия окружающей среды	Нержавеющая сталь SUS440C (EQ.)	Нержавеющая сталь SUS304	Термопластик -	Подшипниковая сталь SUJ2	Серый чугун FC200
Сухо	0	•	•	_	X
Туман Свежая вода		•	•	X	XX XX
Соленая вода Азотная кислота	X X	0	• X	XX XX	XX XX
Серная кислота Соляная кислота	xx xx	o	0	XX XX	XX
Соляная кислота	^^	_		^^	^^

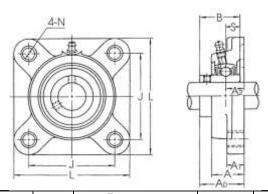
^{• -} Очень хорошо О - Хорошо — - Не очень хорошо X - Плохо XX - Очень плохо

4. Точность

						Unit: μ m
	Внутр	еннее кольцо подш	ипника		Кор	опус
No. MUC	∠dmp max. min.	Vdp	⊿Bs max. min.	Kia max.	No. PPL	⊿Hs
204 ~ 206 207 ~ 208	+ 18 0 + 21 0	12 14	0 - 120 0 - 120	18 20	204 ~ 208	± 300

- ∠ dmp отклонение среднего диаметра отверстия
 - Vdp непостоянство диаметра отверстия
- riangle Bs отклонение ширины внутреннего кольца
 - Кіа радиальное биение внутреннего кольца
- ✓ Нѕ отклонение эксцентричности эксцентричной поверхности внутреннего кольца и эксцентрикового запорного кольца

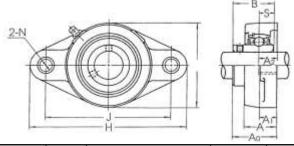
5. Момент затяжки


	Подшипник			Кор	iyc
No. MUC	Шестигранный ключ №	Момент затяжки, N.m	No. PPL, FPL, NFL	Фиксирующий болт	Момент затяжки, N.m
204	3	3.9	204	M10	17.7
205	3	3.9	205	M10	24.5
206	3	3.9	206	M10/M12	29.4
207	4	8.3	207	M12	35.3
208	4	8.3	208	M12	45.1

ASAHI

СТАЦИОНАРНЫЕ КОРПУСА

MUCA200SB



Диам. вала, мм	Узел №				Pa	азмер⊣, мм	1				Размер болта		осно нагруз Сг	вная ка, kN Cor	Корпус №	Вес, кг
		Η	L	Α	J	NN ₁	H₁	H ₂	В	S						
20	MUCA 204 SB	33.3	127	38	95	11 ₁₄	14.2	65	31	12.7	M10	MUC 204	10.9	5.3	PPL204 SB	0.28
25	MUCA 205 SB	36.5	140	38	105	1114	14.5	71	34.1	14.3	M10	MUC 205	11.9	6.3	PPL205 SB	0.33
30	MUCA 206 SB	42.9	162	46	119	1418	17.8	83	38.1	15.9	M12	MUC 206	16.7	9	PPL206 SB	0.52
35	MUCA 207 SB	47.6	167	48	127	1418	18	94	42.9	17.5	M12	MUC 207	22	12.3	PPL207 SB	0.73
40	MUCA 208 SB	49.2	184	54	137	1418	19.5	98	49.2	19	M12	MUC 208	24.9	14.3	PPL208 SB	0.93

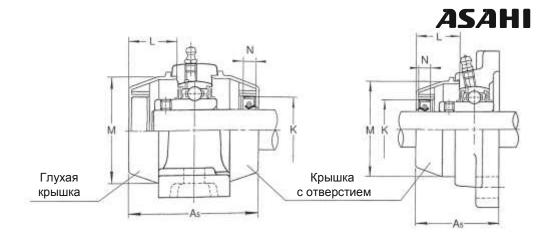
УЗЛЫ В КВАДРАТНОМ ФЛАНЦЕ

MUCB200SB

											Подш	ІИПНИК			
Диам. вала, мм	Узел №				Pa	змеры, им				Размер болта	Подшипник №	Осно нагруз Сг	-	Корпус №	Вес, кг
		L	Α	J	N	A ₁ A ₂	ΑD	В	S			0.	00.		
20	MUCB 204 SB	86	27.8	63.5	11	13.4 ₁₈	36.3	31	12.7	M10	MUC 204	10.9	5.3	FPL204 SB	0.28
25	MUCB 205 SB	94.5	27.9	70	11	14.3 17	36.8	34.1	14.3	M10	MUC 205	11.9	6.3	FPL205 SB	0.33
30	MUCB 206 SB	107	31.5	83	11	14.319.2	41.4	38.1	15.9	M10	MUC 206	16.7	9	FPL206 SB	0.52
35	MUCB 207 SB	118	34.8	92	13	15.5 21.5	46.9	42.9	17.5	M12	MUC 207	22	12.3	FPL207 SB	0.65
40	MUCB 208 SB	130	37.5	102	14	17 23	53.2	49.2	19	M12	MUC 208	24.9	14.3	FPL208 SB	0.87

УЗЛЫ В ДВУХБОЛТОВОМ ФЛАНЦЕ

MUCD200SB


Диам. вала, мм	Ne									Размер болта	Подш Подшипник №	ипник Основная нагрузка, kN Cr Cor	Корпус №	Вес,	
		Н	L	Α	J	N A ₁	A ₂	A ₀	В	S					
20	MUCD 204 SB	113	64.8	26.5	90	1111.4	15.4	33.7	31	12.7	M10	MUC 204	10.9 5.3	NFL204 SB	0.23
25	MUCD 205 SB	130	70	29.1	99	1113.5	17	36.8	34.1	14.3	M10	MUC 205	11.9 6.3	NFL205 SB	0.3
30	MUCD 206 SB	148	80	30.5	117	1113.3	19	41.2	38.1	15.9	M10	MUC 206	16.7	NFL206 SB	0.44
35	MUCD 207 SB	163	90	32.8	130	1316.1	18	43.4	42.9	17.5	M12	MUC 207	22 12.:	NFL207 SB	0.65
40	MUCD 208 SB	175	100	37.5	144	14 20	21.5	51.7	49.2	19	M12	MUC 208	24.9 14.3	NFL208 SB	0.87

ТЕРМОПЛАСТИКОВЫЕ

КРЫШКИ

Стационарные корпуса

Узлы в квадратном фланце

Узлы в двухболтовом фланце

						Pa	змеры, мм			
Диам. вала,	Открытая крышка	Закрытая крышка					Подушки с установочными	Фланцы		
MM	No.	No.					отверстиями L	N	K	
							As			
			L	N	K	М				
20	RMO-204	RMC-204	23	7	32	50	63	48	48	
25	RMO-205	RMC-205	25	7	37	55	68	50	50	
30	RMO-206	RMC-206	30	7	42	64	79	59	59	
35	RMO-207	RMC-207	32	7	47	74.5	86	64	64	
40	RMO-208	RMC-208	37	7	52	84	104	71	71	

Внимание! При заказе данных крышек проконсультируйтесь с нашими специалистами.

Возможна задняя изоляция для фланцевых корпусов, FPL и NPL в комбинации с подшипниками MB серии. В случае необходимости, проконсультируйтесь с нашими специалистами.

Примечание

- Размеры болтов для узлов термопластиковых корпусов могут отличаться от размеров болтов для подшипниковых узлов типа JIS для некоторых размеров.
- Термопластиковый корпус можно повредить в результате тяжелых ударов.
- Эти узлы не должны применяться в областях с возможностью возникновения статического электричества. При использовании они должны быть заземлены надлежащим образом.
- Запас прочности корпуса показывает средние значения при нормальной рабочей температуре. Во внимание должен приниматься фактор безопасности в зависимости от рабочей температуры, нагрузки, ее природы и направления.
- Для предотвращения ломкости внутренних колец из-за перетяжки или недотяжки винтов во время вибрации в процессе работы, винты должны быть затянуты равномерно и надлежащим образом.
- Спецификации могут меняться без предварительного уведомления.

JQA - 1973

ASAHI

JQA - EM4783

ПОДШИПНИКОВЫЕ УЗЛЫ

ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ

Новинка

Подшипниковые узлы из нержавеющей стали

Эта серия характеризуется отличными антикоррозийными свойствами, также как и саморегулировкой; все подшипники из нержавеющей стали встроены в цельные нержавеющие стальные корпуса. Подшипники могут быть смазаны высококачественной пищевой смазкой, совместимой с USDA/FDA, которая также может работать при повышенных температурах с применением соответствующей внутренней очистки и уплотняющих устройств.

Деталь

Превосходные антикоррозийные качества:

И подшипники, и корпуса изготовлены из нержавеющей стали, подходящей для работы в суровых атмосферных условиях с маслоотражателями из нержавеющей стали.

Наилучшее решение для механизмов в пищевой промышленности:

По запросу подшипник типа MUC может быть смазан высококачественной пищевой смазкой, подходящей для пищевых производств. Подшипник типа MB уже смазан такой смазкой по умолчанию.

Взаимозаменяемые размеры с обычными узлами типа JIS:

Подшипник типа MUC может быть заменен на подшипник типа UC, а подшипник типа MB может заменяться подшипником типа B.

Материал

Система нумерации подшипниковых узлов

MUC FC 2 05 FD

	Части	Материалы					
Подшипник	Наружные и внутренние кольца Шарики Маслоотражатели Сепаратор Резиновое уплотнение Установочные винты	Нержавеющая сталь Нержавеющая сталь Нержавеющая сталь Нержавеющая сталь Нержавеющая сталь	SUS440C (EQ.) SUS440C SUS304 SUS304				
		Нержавеющая сталь					
	Корпус	Нержавеющая литая сталь	SCS13				

MUC P 2 04

Номер внутреннего диаметра (отверстие 20 мм). Номер внешнего диаметра (подшипники серии 2). Символ типа корпуса (МР, нержавеющая литая сталь, стационарные корпуса).

Символ типа подшипника, подшипниковые узлы из нержавеющей стали.

Для пищевых производств, предварительно смазанные высококачественной пищевой смазкой. Номер внутреннего диаметра (отверстие 25мм). Номер внешнего диаметра (подшипники серии 2). Символ типа корпуса (МР, нержавеющая литая

Рекомендуемый момент затяжки сталь с

фланцевыми гильзами).

Подшипник №	Размер шестигранного ключа	Момент затяжки, N•m	MB 5 FD
MB4	2.5	2.4	
MB5~MB6 MUC201~MUC206	3	3.9	Символ типа подшипника,
MB7~MB8 MUC207~MUC209	4	8.3	
MUC210	5	16	

подшипниковые узлы из нержавеющей стали.

Для пищевых производств, предварительно смазанные высококачественной пищевой смазкой. Номер внутреннего диаметра (отверстие 25мм). Символ типа подшипника, подшипники из нержавеющей стали.

Устойчивость к коррозии

• - Отличная О - Хорошая Δ - Условная Х - Плохая

Серия	Материал				X	имическа	я среда				
		Дистиллированная вода	Сточные воды	Морская вода		Азотная кислота		Гидроксид натрия	Гидроксид кальция	Перекись водорода	
MUCP MB	Нержавеющая сталь SUS440C(EQ.) Нержавеющая сталь SUS304 Нержавеющая литая сталь SCS13	•	О •	Δ •	X O O	X O O	Δ Ο Ο	О •	O •	0 0 0	O •
UCP	Подшипниковая сталь SUJ2 Серый чугун FC200	0 0	Δ	X X	X X	X X	X X	X X	X X	X X	X X

Примечание – применяемые условия для обозначенных выше химических сред (примерно 10% раствор) не означают полное погружение во время работы, а разбрызгивание жидкостей на поверхности подшипниковых узлов.

Допуски

Допуски для подшипников

Unit: µ m

			Внутр	еннее кольцо	Наружное кольцо							
Номинальный диаметр отверстия, мм		Откло среднего диаметра отверстия		отверстия,	Откло ширины внутренно кольца, Δ	его	Радиальное биение внутреннего кольца, Кіа	_	альный р отверстия,	Отклоі среднего д отверсті	диаметра	Радиальное биение внутреннего кольца, Кеа
Свыше	Включительно	Верхнее	Нижнее		Верхнее	Нижнее	Максимальное	Свыше	Включительно	Верхнее	Нижнее	Максимальное
6 10 18 30	10 18 30 50	+12 +15 +18 +21	0 0 0	8 10 12 14	0 0 0 0	-120 -120 -120 -120	15 15 18 20	30 50 80	50 80 120	0 0 0	-11 -13 -15	20 25 35

Допуски на корпуса

Unit: µ m

Номер корпуса	Стационарные		Фланцевого т	ипа		Узлы натяжения					
MP, MPA, MF, MFL, MFC	Отклонение рас опорной поверх центра сфериче	ности до	винтового отверстия	Отклонение диаметра со ΔН3s		ширин	онение ны паза A1s	Отклон расстояни обоими	Допуски симметрии для поверхностей с пазами, Х		
MT	ΔHs	ΔA2s		Верхнее	Нижнее	Верхнее	Нижнее	ΔH	l1s	Максимальное	
203~206 207~210	±150	±500	700	0	-46 -54	+200	0	0	-500	500	

Допуски вала

Диапазон рабочих температур

Рекомендуемые допуски вала для этой серии указаны в таблице ниже, вал должен быть прямой и без заусениц.

Пист		Реко	мендуемые д	опуски, µт	L
диам	етр вала, мм	Обыч	ные	Тугие	
Свыше	Включительно	js7	h7	m6	Г
6	10	±7.5	0~-15	+15~+6	П
10	18	± 9	0~-18	+18~+7	
18	30	± 10.5	0~-21	+21~+8	С
30	35	± 12.5	0~-25	+25~+9	L

■ MB-FD	-15~+100°C
MUC200	-20~+120°C
■ MUC200FD	-20~+120°C
■ MUC200C4HR20	-20~+200°C

Подшипники поставляются с высококачественной пищевой смазкой, признанной USDA (Министерством сельского хозяйства США) подтвержденного качества USDA-H1.

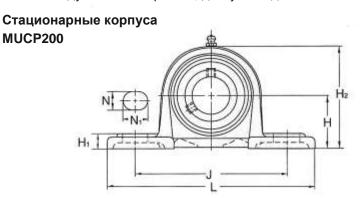
Допустимая скорость

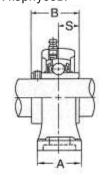
Для указания, добавьте префикс C4HR20 для пищевых производств и применения при

высоких температурах. Пожалуйста, будьте осторожны, чтобы смазка не соприкасалась напрямую с пищей.

Пищевое, химическое, сельскохозяйственное производство.

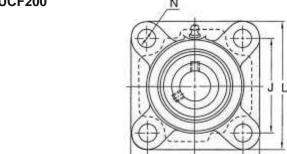
Внутренний диаметр No.

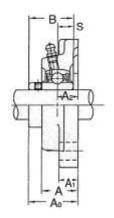

♦ Для точного выбора подшипника проконсультируйтесь с нашими специалистами.



Размеры

◆ Для более высокой безопасности во время промывки под высоким давлением проконсультируйтесь с нашими специалистами по поводу стальных крышек, доступных для всех стальных корпусов.

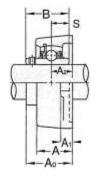




Диаметр	Узел №	Д	Ј опуски	, мм				Размер	Г		Корпус №	Вес, кг	
вала, мм								болта	Подшипник №	Основная на kN Cr	гр		
		H L A 、	J N	N ₁	H₁	H ₂	B S				Cor		
12	MUCP201	30.2 127 30 9	5 13	19	9	64	31 12.7	M10	MUC201	10.9	5.3	MP203	0.55
15	MUCP202	30.2 127 30 9	5 13	19	9	64	31 12.7	M10	MUC202	10.9	5.3	MP203	0.53
17	MUCP203	30.2 127 30 9	5 13	19	9	64	31 12.7	M10	MUC203	10.9	5.3	MP203	0.52
20	MUCP204	33.3 127 30 9	5 13	19	9	64	31 12.7	M10	MUC204	10.9	5.3	MP204	0.5
25	MUCP205	36.5 140 30 10	05 13	19	10	70	34.1 14.3	M10	MUC205	11.9	6.3	MP205	0.65
30	MUCP206	42.9 165 36 12	21 17	21	11	82	38.1 15.9	M14	MUC206	16.7	9.05	MP206	0.95
35	MUCP207	47.6 167 38 12	27 17	21	12	92	42.9 17.5	M14	MUC207	22	12.3	MP207	1.25
40	MUCP208	47.0 107	37 17	22	12	32	98 49.2 19	M14	MUC208	24.9	14.3	MP208	1.5
45	MUCP209	43.2 TO4	16 17	22	13		10549.2 19	M14	MUC209	28.1	16.4	MP209	1.75
50	MUCP210	57.2 206 45 15	59 20	25	14 ′	112	51.6 19	M16	MUC210	30.2	18.6	MP210	2.05

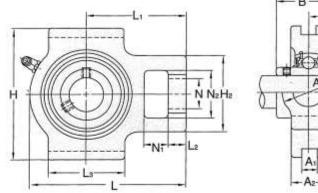
Узлы в квадратном фланце MUCF200

Диаметр	Узел №	Допуски, мм	Размер болта	Подшипник	Корпус №	Вес, кг
вала, мм			ООЛТА	Подшипник № Основная нагру kN Cr		
		L A J N A ₁ A ₂ A ₀ B	;	Cor		



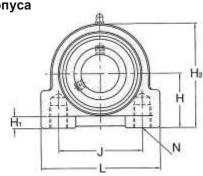
Разме	ры			,12,111
12	MUCF201	86 25.5 64 12 12 15 33		10.9 5.3 MF204 0.7
15 17	MUCF202 MUCF203	86 25.5 64 12 12 15 33 86 25.5 64 12 12 15 33		10.9 5.3 MF204 0.68 10.9 5.3 MF204 0.67
20 25 30	MUCF204 MUCF205 MUCF206	86 25.5 64 12 12 15 33 95 27 70 12 14 16 35 108 31 83 12 13.5 18 40	.8 34 1 M10 MUC205	10.9 5.3 MF204 0.65 11.9 6.3 MF205 0.9 16.7 9.05 MF206 1.2
35 40 45	MUCF207 MUCF208 MUCF209	117 34 92 14 11 19 ⁴⁴	.4 14.3 38.1 M12 MUC207	22 12.3 MF207 1.6 24.9 14.3 MF208 2.15 28.1 16.4 MF209 2.55
50	MUCF210	143 _{40 111} 16 13 22 ⁵⁴	.6 42.9 17.5 M14 MUC210	30.2 18.6 MF210 2.65
			19 49.2	
			19	
			51.6 19	

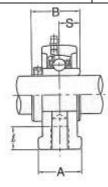
Узлы в двухболтовом фланце MUCFL200


Диаметр	Узел №		Допуски, мм										Г	Іодшипник		Корпус №	Вес, кг
вала, мм												болта	Подшипник № Основная нагру kN Cr				
		Н	L	Α	J	N	A ₁	A ₂	A ₀	В	S				Cor		
12	MUCFL201	113	60 2	25.5	90	12	10	15 3	3.3	31	12.7	M10	MUC201	10.9	5.3	MFL204	0.4
15	MUCFL202	113	60 2	25.5	90	12	10	15 3	3.3	31	12.7	M10	MUC202	10.9	5.3	MFL204	0.38
17	MUCFL203	113	60 2	25.5	90	12	10	15 3	3.3	31	12.7	M10	MUC203	10.9	5.3	MFL204	0.37
20	MUCFL204	113	60 2	25.5	90	12	10	15	33.3	31	12.7	M10	MUC204	10.9	5.3	MFL204	0.35
25	MUCFL205	130	68	27	99	16	10	16	35.8	34.1	14.3	M14	MUC205	11.9	6.3	MFL205	0.5
30	MUCFL206	148	80	31	117	16	10				15.9	M14	MUC206	16.7	9.05	MFL206	0.8
35	MUCFL207	161	90	34	130	16	11	19	44 4	42.9	17.5	M14	MUC207	22	12.3	MFL207	1.05
40	MUCFL208	175	100	36	144	16	11		51.2			M14	MUC208	24.9	14.3	MFL208	1.35
45	MUCFL209	188	108	38	148	19	13		52.2			M16	MUC209	28.1	16.4	MFL209	1.65
50	MUCFL210	197	115	40	157	19	13	22 5	4.6	51.6	19	M16	MUC210	30.2	18.6	MFL210	1.9

Размеры

Узлы натяжения **MUCT200**

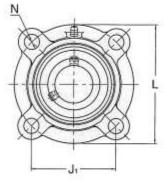


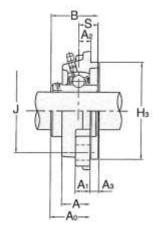

Диаметр	Узел №		Допуски, мм											Г	Іодшипник		Корпус №	Вес, кг
вала, мм														Подшипник №	Основная на kN Cr	агр		
		A	A ₁	A ₂	H H ₁	H ₂	L	L ₁	L ₂ L ₃	N	N ₁	N ₂	B S			Cor		
12 15 17	MUCT201 MUCT202 MUCT203	32 32 32	12 12 12	21 21 21	89 76 89 76 89 76	46 46 46	92 92 92	60 60 60	10 44 10 44 10 44	19 19 19	18 18 18	32 32 32	31 12.7 31 12.7 31 12.7	MUC201 MUC202 MUC203	10.9 10.9 10.9	5.3 5.3 5.3	MT204 MT204 MT204	0.85 0.83 0.82
20 25 30	MUCT204 MUCT205 MUCT206	32 32 36.5	12 12 12	21 22 27	89 76 89 76 102 89	46 46 52	92 96 111	60 61 69	10 44 10 44 10 50	19 19 22	18 18 18	32 32 37	31 12.7 34.1 14.3 38.1 15.9	MUC204 MUC205 MUC206	10.9 11.9 16.7	5.3 6.3 9.05	MT204 MT205 MT206	0.8 0.9 1.4
35 40 45	MUCT207 MUCT208 MUCT209	37 49 49	12 16 16	30 33 34	102 89 114 102 117 102	58 74 74	127 142 143	87	13 56 16 72 16 72	22 29 29	18 20 20	37 49 49	42.9 17.5 49.2 19 49.2 19	MUC207 MUC208 MUC209	22 24.9 28.1	12.3 14.3 16.4	MT207 MT208 MT209	1.7 2.6 2.55
50	MUCT210	49	16	37	117 102	74	147	89	16 72	29	20	49	51.6 19	MUC210	30.2	18.6	MT210	2.65

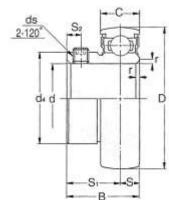
Новинка!

Стационарные корпуса MUCPA200

Диаметр	Узел №				Дог	пуски, мм							Корпус №	Вес, кг		
вала, мм												Подшипник №	Основная нагрузка, kN Cr Cor			
		Н	L	Α	J	N	ł	H₁	H ₂	В	S					
12	MUCFL201	30.2	76 2	5.5	52	M10x1.5	12	5.7	60.9	31	12.7	MUC201	10.9 5.3	10.9 5.3	MPA204	0.49
15	MUCFL202	30.2	76 2	5.5	52	M10x1.5	12	5.7	60.9	31	12.7	MUC202	10.9 5.3		MPA204	0.47
17	MUCFL203	30.2	76 2	5.5	52	M10x1.5	12	5.7	60.9	31	12.7	MUC203			MPA204	0.46
20 25 30	MUCFL204 MUCFL205 MUCFL206	30.2 36.5 42.9	76 2 84 94	5.5 30 34	52 56 66	M10x1.5 M10x1.5 M14x2		5.7 8 9.4	60.9 70 82	34.1	12.7 14.3 15.9	MUC204 MUC205 MUC206	10.9 11.9 16.7	5.3 6.3 9.05	MPA204 MPA205 MPA206	0.44 0.61 0.95




Размеры



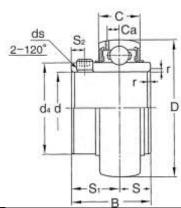
Узлы во фланцевой гильзе MUCFC200 <u>N</u>

Диаметр	Узел №	Узел № Допуски, мм									Г	Корпус №	Вес, кг				
вала, мм												Подшипник №	Основная н Сr	агрузка, kN Cor			
														OI	COI		
		L	Α	J	J_1	Ν	A_1	A_2	Аз	Нз	В	S					
25	MUCFC205	90	21	90	63.6	12	11	10	6	70	34.1	14.3	MUC205	11.9	6.3	MFC205	0.69
30	MUCFC206	100	23	100	70.7	12	13	10	8	80	38.1	15.9	MUC206	16.7	9.05	MFC206	0.88
35	MUCFC207	110	26	110	77.8	14	13.5	11	8	90	42.9	17.5	MUC207	22	12.3	MFC207	1.14
40	MUCFC208	120	26	120	84.8	14	13.5	11	10	100	49.2	19	MUC208	24.9	14.3	MFC208	1.49

Шарикоподшипники для узлов

MUC200

MUC200C4HR20


Размеры Диаметр Узел № Вес, кг Допуски, мм Корпус № вала, Основная нагр мм kΝ d D С S Sı S_2 В r ds Ca d_1 Cr Cor 10.9 5.3 12 MUC201 12 47 17 12.7 4.5 M6x1 4.5 MP203 0.21 15 MUC202 15 47 31 17 184.5 M6x1 4.5 10.9 5.3 MP203 0.19 4.5 5.3 0.18 17 MUC203 17 47 17 .3 12.7 4.5 M6x1 10.9 MP203 31 1 29 ¹⁸4.5 4.5 10.9 5.3 0.16 MUC204 M6x1 MP204 20 20 47 31 17 1.5 29 .3 12.7 4.5 6.3 0.19 11.9 25 MUC205 25 52 34.1 17 1.5 18 ⁵ ₅ M6x1 34 MP205 5.1 9.0 0.31 1.5 16.7 MUC206 62 38.1 19 M6x1 40.5 MP206 .3 12.3 0.48 42.9 2 6 5.8 22.0 MUC207 M8x1 MP207 35 35 72 20 48 12.7 6.2 6.5 0.62 0.67 14.3 49.2 2 8 MP208 40 MUC208 40 80 21 M8x1 53 18 16.4 49.2 28.1 2 45 MUC209 45 85 22 M8x1 57.3 MP209 .3 14.3 19 ₉ 18.6 0.78 M10x1.25 6.5 30.2 MUC210 51.6 2 MP210 50 23 63 50 90 .8 15.9 22 .2 17.5 25.4 19 30.2 19 30.2

19 Для пищевых механизмов с высококачественной смазкой добавьте префикс FD.

Для работы в условиях высоких температур в пищевых механизмах добавьте префикс C4HR20.

32.6

Шарикоподшипники для узлов МВ

Диаметр вала,	Узел №				Допуски	1, MM			Основная н	Вес, кг				
ММ		d	D	В	С	r	S	S ₁	S ₂	ds	d ₄	Cr	Cor	
20	MB4 FD	20	47	24.7	14	1.5	7	17.7	4.5	M5x0.8	29	10.9	5.3	0.12
25	MB5 FD	25	52	27	15	1.5	7.5	19.9	5	M6x0.75	34	11.9	6.3	0.16
30	MB6 FD	30	62	30.3	16	1.5	8	22.3	5	M6x0.75	40.5	16.7	9	0.25
35	MB7 FD	35	72	32.9	17	2	8.5	24.4	6	M8x1	48	22	12.3	0.38
40	MB8 FD	40	80	35.5	18	2	9	26.9	8	M8x1	53	24.9	14.3	0.49

Спецификации и дизайн могут меняться без предварительного уведомления.

ШИРОКАЯ ГАММА ПРОДУКТОВ ВЫСОКОГО КАЧЕСТВА

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР ASAHI НА ТЕРРИТОРИИ РФ

ASAHI – это Подшипниковые узлы Наконечники Шарнирные головки

ASAHI SEIKO CO., LTD.

ЦПК-Москва

115093, г. Москва, Партийный пер., д. 1 (вход со стороны 3-го Павловского переулка) тел./факс:

+7 (495) 221-61-81 (многоканальный)

тел. для регионов **8-800-333-90-80** (звонок из любого региона России бесплатный) e-mail: info@pkmoscow.ru

www.pkmoscow.ru

ASAHI SEIKO CO., LTD. www.pkmoscow.ru